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Science at the Environment Agency

Science underpins the work of the Environment Agency, by providing an up to date
understanding of the world about us, and helping us to develop monitoring tools
and techniques to manage our environment as efficiently as possible.

The work of the Science Group is a key ingredient in the partnership between
research, policy and operations that enables the Agency to protect and restore our
environment.

The Environment Agency’s Science Group focuses on five main areas of activity:

• Setting the agenda: To identify the strategic science needs of the Agency to
inform its advisory and regulatory roles.

• Sponsoring science: To fund people and projects in response to the needs
identified by the agenda setting.

• Managing science: To ensure that each project we fund is fit for purpose and
that it is executed according to international scientific standards.

• Carrying out science: To undertake the research itself, by those best placed to
do it - either by in-house Agency scientists, or by contracting it out to
universities, research institutes or consultancies.

• Providing advice: To ensure that the knowledge, tools and techniques
generated by the science programme are taken up by relevant decision-makers,
policy makers and operational staff.

Steve Killeen Head of Science



Uncertainty in Critical Load Assessment Models4

Executive Summary
This is the final report of a project aimed at quantifying the uncertainties in critical load
assessment models. The work forms part of Environment Agency R&D Project No. p4-120/4:
Acidification and Annual Audits. The aim of the work described in this report was to examine the
uncertainties in critical load assessments and develop a practical methodology for such
assessments within the Environment Agency’s regulatory role. This work built on an earlier
Environment Agency R&D project which developed methods for assessing the uncertainty in
critical loads due to uncertainty in the input parameters to critical load models; the methods were
then applied to a forested site in southern England.

In this report, a programme of testing uncertainties in the acidity critical load model used for
terrestrial ecosystems was carried out at the same site. The sensitivities to choice of input
parameters, their statistical distribution type and their intercorrelation were calculated. It proved
important to include correlations between deposition parameters. The methods were then applied
to other coniferous forest sites. It was hoped that this would identify parameters which could be
selectively targeted for research to narrow output uncertainties, but almost any input parameter
proved potentially important. The methods were also applied to heathland, unmanaged woodland
and critical loads for nutrient nitrogen, covering the entire range of terrestrial critical load methods
used in the UK.

An uncertainty analysis of acidity critical loads for freshwaters was carried out using similar
methods, and applied to the 22 sites of the UK Acid Waters Monitoring Network. Here, one
parameter - the current base cation concentration in waters - dominated the contribution of input
parameters to total uncertainty. For both aquatic and terrestrial ecosystems, output parameter
uncertainty was generally considerably less than input parameter uncertainty, thought to be due
to a ‘compensation of errors’ mechanism. The methodology could also be used to calculate
probability of fish population reduction or extinction instead of a critical load.

The methodology was then applied on a national scale using managed coniferous forests as an
example. Similar patterns of sensitivity were observed, but also variability between regions. At a
national scale other uncertainties were identified, such as uncertainty in mapping habitats. The
problems of estimating uncertainties at designated sites are discussed, with examples, in this
report. A comparison of critical loads calculated using site-specific and national parameters
identified a number of differences. It was concluded that it is inadvisable to attempt to interpret
national-scale critical load maps at a local or site-specific scale.

A method for modelling critical load exceedance was developed and tested at a regional scale. It
was concluded that use of bivariate normal distributions for both deposition and critical loads was
the most appropriate method, but that the critical load distribution needed to take into account
site conditions. Various presentation methods for critical loads and exceedance are discussed.

A case study at the Liphook site concluded that reducing the emissions from power stations and
refineries alone would not significantly reduce the chance of exceeding the acidity critical load.
Reducing the emissions from all Environment Agency-regulated sources more generally would
have some effect, comparable with that associated with reducing local ammonia emissions from
agriculture. This sector analysis is likely to be site-specific, but could be applied elsewhere.

Finally, a set of frameworks to allow the Environment Agency to incorporate critical load
uncertainty in its regulatory role is proposed here. It would be useful to be able to trial these in a
practical context. The advantages and disadvantages of incorporating uncertainty into critical
load assessments are discussed, and a number of recommendations for further work are made.
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Introduction
1.1 Overall aims of the project
This project is part of a larger Environment Agency umbrella project, Development of methods to
assess and manage the impacts of major industries on air quality, which addresses a broad
range of issues affecting the assessment of air quality.

The aim of the umbrella project is “to establish better methods with which the Environment
Agency can assess changes to acid deposition exceedance and to airborne concentration, from
changes in the emissions it regulates, or on which it is asked to comment during consultations.”

Two specific objectives for the overall project were identified, namely:

1. To examine the uncertainties in critical load assessments and develop a practical
methodology for such assessments within the Environment Agency’s regulatory role
(Task 1);

2. To develop an appropriate methodology for use by the Environment Agency to audit, on
an annual basis, the industrial source contributions to priority air quality concentrations
(Task 2).

This report addresses the first of these objectives (Task 1).

Methods used by the Environment Agency must be practical, reliable and defensible whilst using
up-to-date modelling techniques and available data sets.  It is also important that the methods
developed can be applied to any Environment Agency-regulated industrial source within the UK,
to ensure consistency within the regulatory process. The complexity and variability of the natural
environment makes developing such methods a difficult task. This report summarises our
investigations into various aspects of critical load uncertainty in the UK, and makes some
recommendations for a practical methodology for critical load assessment within the Environment
Agency’s role. It also outlines aspects which need further investigation.

1.2 Breakdown of work
1.2.1 Introduction

This work builds on a previous Environment Agency contract (Abbott et al., 2003) during which
an assessment was made of the uncertainties of critical loads at Liphook, a coniferous forested
site in southern England (Skeffington et al., 2006). The purpose of the present investigation was
to extend this earlier work to a wider range of sites and ecosystem types, and to investigate other
aspects of critical load uncertainty relevant to the Environment Agency’s role. To this end, the
work was organised into six subtasks:

Subtask 1.1: Determine the uncertainty in critical loads for other terrestrial and freshwater
ecosystem types;

Subtask 1.2:  Draw conclusions on likely dependence of uncertainty in critical loads on habitat
size and location;

Subtask 1.3:  Clarify uncertainty at a site-specific scale;
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Subtask 1.4: Develop and recommend a practical methodology for critical load assessment
within the Environment Agency’s regulatory role;

Subtask 1.5:  Recommend ways to present critical load exceedances;
Subtask 1.6: Make recommendations about source sectors requiring the greatest attention in

a critical load assessment.

These are discussed in more detail below. The interactions between the subtasks were such that
it was decided not to use the subtask titles as section headings, but to write the report in a more
coherent fashion. Section 1.2 explains where the results from each subtask are to be found.

1.2.2 Uncertainty in critical loads for different ecosystem types

Subtask 1.2 required the uncertainty in critical loads to be determined at as many terrestrial and
freshwater ecosystem types as possible, using the most up-to-date critical load assessments.
Critical loads for the UK are based on empirical methods and simple mass balance (SMB)
equations.  Acidity critical loads for non-woodland terrestrial habitats are based on the empirical
acidity critical loads for soils. The steady state mass balance (SSMB) equation is applied to both
managed and unmanaged woodland habitats.  In each case, habitat-specific inputs are used to
calculate critical loads.  Mass balance critical loads of nutrient nitrogen (CLnutN) are applied to the
managed woodland habitats and empirical critical loads to the remaining terrestrial habitats (Hall
et al., 2003a). Freshwaters are assessed by the First Order Acid Balance (FAB) model. The aim
of the subtask was assess the uncertainty attached to a selection of these methods at a selection
of sites. Uncertainty would also be calculated at the national scale for at least one of these
habitat types.

During the course of the work, it became clear that a number of assumptions related to the input
parameters needed to be investigated in a systematic way. It was most convenient to do this at
coniferous forest sites, as these are the sites for which most data are available. The method
developed was then applied to other coniferous forest sites, and then to heathland and
unmanaged woodland sites. A comparison with the empirical method for heathland is included.
Finally, uncertainty in the critical load for nutrient nitrogen at two coniferous forest sites was
calculated. All this is described in Section 2.1. Section 2.2 covers critical loads for freshwaters.
Uncertainty in the model used was calculated at 22 sites of the UK Acid Waters Monitoring
Network. The work therefore covers at least one example of every critical load method used in
the UK.

Because it was thought best to separate the site-specific and national applications in the report,
the application of critical load uncertainty at the national scale is discussed in Section 3.1.
Section 3.2 considers the relative importance of two major input parameters (calcium weathering
and deposition) at a national scale.

1.2.3 Dependence on habitat size and location

Subtask 1.2 was to draw conclusions on the likely dependence of uncertainty in critical load on
habitat size and location. This is discussed in Sections 3.3 to 3.6.

1.2.4 Uncertainty on a site-specific scale

Subtask 1.3 involved clarifying uncertainty at a site-specific scale. A comparison of critical loads
and their uncertainties based on either national or site-specific data at a managed coniferous
woodland site is made in Section 4. Comparison of acidity critical loads based on (i) dominant
soil type; (ii) least-sensitive soil type; (iii) most sensitive soil type; (iv) area-weighted mean by soil
type is given in Section 3.3, which also considers other aspects of critical loads in relation to soil
type. The suitability of criteria/models used at the national scale for site-level assessment is



Uncertainty in Critical Load Assessment Models 9

discussed in Section 4.3. Uncertainties in applying critical load methodology to designated sites
are discussed in Section 3.4, and in mapping habitats in Section 3.5.

1.2.5 A practical methodology for critical load assessment

Subtask 1.4 was to develop and recommend a practical methodology for critical load assessment
within the Environment Agency’s regulatory role. A hierarchical practical approach is suggested
in Section 6.

1.2.6 Methods of presenting critical load exceedance

Subtask 1.5 was to recommend ways of displaying results in terms of mapping critical load
exceedance. Several possible approaches are described in Section 7. A methodology for
performing an uncertainty analysis of critical load exceedance, and the presentation of results for
the South East of England, is described in Section 5.

1.2.7 Source sector case study

Subtask 1.6 was to make recommendations on source sectors requiring the greatest attention in
a critical load assessment. This is, of course, likely to be site-specific: a case study of one site is
described in Section 8.
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2 Site-specific uncertainty
Summary

• This section describes the calculation of uncertainty in critical loads at a number of
individual sites, both terrestrial and aquatic.

• Estimates were made of the range and statistical distribution of all the input parameters to
the critical load models at given sites, and the ranges and distributions of the resulting
critical loads and exceedances were estimated using Monte Carlo methods. The
sensitivity of these outputs to the uncertainty in each input parameter was also calculated.

• The effects of various assumptions about input parameters were tested at Liphook, a
coniferous forest site in southern England used in previous work for the Environment
Agency. The model used was the Steady State Mass Balance model, as used in national
critical load assessments.

• Using largely national defaults rather than measured data to parameterise the Liphook
site led to an increase in uncertainty of the critical load for acidity, the coefficient of
variation (CV) increasing from 37 to 60 per cent. With the measured parameters,
uncertainty in weathering rates was most important, whereas with the national defaults
uncertainty in calcium deposition dominated.

• The above point illustrates that uncertainty in base cation deposition can be a major
contributor to terrestrial critical loads as well as to exceedance.

• Correlations between input parameters should be taken into account in Monte Carlo
analysis. Changing the correlation between the two weathering rate parameters had little
effect on critical load uncertainty, but incorporating correlations between deposition
parameters reduced the uncertainty of exceedance and some critical load values at
Liphook. Critical loads and exceedance also became less sensitive to uncertainty in
deposition if correlations were included. Including correlations is recommended for future
work.

• Use of different statistical distributions for terrestrial input parameters had only a small
effect at Liphook. Lognormal or truncated normal distributions seemed best for deposition
parameters.

• Liphook was compared with two contrasting coniferous forest sites (Thetford and Aber)
using the same methodology. Different input parameters were significant in determining
output parameter uncertainty at different sites. Thus, it is not easy to target research
towards narrowing uncertainties except on a site-specific basis.

• However, on-site measurements clearly reduced uncertainty in critical loads and
exceedances at several sites.

• The uncertainties in critical loads for heathland and unmanaged woodland were
calculated for a single site in North Wales. The empirical method used to generate critical
loads for heathland produced lower critical loads and greater uncertainty than the SSMB
method used for unmanaged woodland. At this site, uncertainty in deposition was much
more important than uncertainty in the terrestrial parameters in influencing exceedance
uncertainty.

• The critical load for nutrient N was calculated by the mass balance method at Liphook
and Aber. The CVs were quite low, and the method at these sites was most sensitive to
the definition of acceptable nitrogen leaching. Deposition parameters dominated the
uncertainty in exceedance.

• Uncertainty in critical loads for freshwater ecosystems was calculated using the First-
Order Acid Balance (FAB) model on data from the UK Acid Waters Monitoring Network
(AWMN).
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• Uncertainty in a single parameter, the present-day non-marine base cation concentration,
dominated the uncertainty in critical loads calculated by FAB. Uncertainty in N deposition
was the most important influence on uncertainty in exceedance at most sites.

• The FAB model allows predictions of fish population health as well as critical loads to be
used in a probabilistic fashion for assessment purposes. This is demonstrated with two
Lake District sites.

• Uncertainty in N deposition dominated uncertainty in critical load exceedance for most of
the aquatic sites, the remainder being sensitive to the present non-marine base cation
concentration.

• If 90% confidence of non-exceedance is required, all 18 GB sites were exceeded with
1998-2000 deposition. For 50% confidence, there were 15 sites, and for 10% confidence,
12 sites. The choice of exceedance probability is arbitrary, but will have a very large effect
on perceptions of damage.

• A meta-analysis showed that the order of uncertainty of critical loads for both terrestrial
and aquatic systems, from most to least, was: CL(A) > CLmaxS > CLmaxN >CLminN.
Coefficients of variation were surprisingly low, generally 20-45%, due to ‘compensation of
errors’.

• At no site was there 100% confidence of exceedance or non-exceedance.

2.1 Critical loads for terrestrial ecosystems
2.1.1 Introduction

Previous work for the Environment Agency in Project P4-083(5) included a Monte Carlo analysis
of the critical load for acid deposition at Liphook, a coniferous forest site in southern England. It
was shown how estimates of deposition and critical loads at this site could be combined into a
probabilistic estimate of exceedance. This section describes how this work was extended. Firstly,
the influence of various assumptions about the input parameters to the critical load model was
tested at the same site. These were: the effects of correlations between input parameters; the
effects of changing assumptions about the amount of uncertainty in input parameters; and the
effects of different assumptions about distribution types. Having developed a reasonable method
for parameterisation of the Liphook site, the work was extended to other coniferous forest sites.
These were research sites with contrasting attributes, and the results of calculation of critical load
uncertainties at these sites were used to test the hypothesis that the relative sensitivity of the
critical loads to different input parameters would remain the same, thus enabling research to
narrow these uncertainties to be appropriately targeted. These sites were also used in a
comparison of the uncertainty in critical loads obtained using national data with that obtained
using site-specific data. This is described in Section 3.4. The Steady-State Mass Balance
(SSMB) model used in these assessments was then applied to a heathland site, and compared
to the uncertainty in the empirical critical load method which is actually used in the UK for
heathland. Finally, the SSMB was used to investigate uncertainty in the critical load for nutrient
nitrogen at two sites in the UK.

2.1.2 Base case

It was decided to initiate the contract by re-running the Monte Carlo analysis previously
performed (Abbott et al., 2003). There were two reasons for this: more information and data had
been accumulated on appropriate uncertainty values to use for the input parameters (see
Heywood et al., 2006a; Skeffington, 2006); and it was desired to compare the site-specific values
used before with data obtained from national data sets. The site-specific parameters were
calculated for a coniferous forested site near Liphook in Hampshire (Lat. 51º 04' N.; Long. 0º 47'
W.; OS Grid Reference 4857 1299). National and default parameters for the same site were
calculated as explained in a review by Heywood et al. (2006a).
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For the Monte Carlo analyses presented in this report, the input parameters are described first in
the form of a table which lists the parameters used and their characteristics. These consist of the
distribution type (such as rectangular, normal) and appropriate descriptive statistics. For
rectangular distributions these are the mean and upper and lower limits; for normal and
lognormal distributions the mean and standard deviation. Also noted is whether any correlations
between input variables were included in the form of a correlation coefficient (r). These input
tables will mostly be found in the Appendices to this report, but Tables 2.1.1 and 2.1.2 below are
provided as examples. Outputs from the analyses are presented in various ways depending on
the question being addressed, but typically they will include descriptive statistics for one or more
response variables. These will include the mean, standard deviation and if appropriate the
coefficient of variation (CV: the standard deviation divided by the mean and expressed as a
percentage). Also typically included in the outputs are the results of a sensitivity analysis. This
calculates the percentage contribution of variation in each input parameter to uncertainty in the
given output parameter, described in Appendix A1.1.

The input parameters used for the initial runs are shown in Table 2.1.1, and those for the original
runs in Table 2.1.2. These differed considerably, differences being highlighted in Table 2.1.2. The
uncertainty ranges are generally larger in the present study, and some distribution types have
changed. Though the correlation structure appears to be different, the use of the Cacorr
parameter (the proportion of the ANCw which is Ca weathering, where ANC is the acid
neutralising capacity) is an alternative method of estimating correlation between ANCw and Caw,
as Caw is varied within the Monte Carlo analysis by multiplying ANCw by Cacorr. This ensures that
Caw is always less than ANCw. Bootstrapping was used to estimate the effective correlation
coefficient as about 0.42. Otherwise the changes are largely due to the use of available site-
specific parameters for the previous work (Table 2.1.2).

Table 2.1.1: 1SSMB parameters used for the initial runs, Liphook site
Paramete
r Units Mean Lower Upper SD Distribution

Correlation
s

ANCw eq ha-1yr-1 100 0 200 Rectangular None
BCu eq ha-1yr-1 250 125 375 Rectangular None
Ca dep eq ha-1yr-1 430 215 Normal None
Ca corr unitless 0.1 0 0.2 Rectangular None
Ca w eq ha-1yr-1 10 Calculated None
Ca u eq ha-1yr-1 160 43.2 Normal None

Q
m3 ha-1yr-

1 4,100
943 Normal None

[BCl] µeq L-1 2 2 2 None None
Ca/Alcrit mol mol-1 1 0.5 1.5 Rectangular None
KGibb m6 eq-2 950 760 1,140 Rectangular None
1Abbreviations are expanded in the List of Abbreviations at the end of the report, and defined if
necessary in the Appendices.

The critical load for acidity (CL(A)) was used as the response variable. It is defined in Equation
A4 in Appendix A. Perhaps not surprisingly, the results are different from those previously
obtained. The deterministic critical load value for the site is 701 eq ha-1yr-1 using the default
values in Table 2.1.1 and 516 eq ha-1yr-1 using the default values in Table 2.1.2. Some statistics
for the distribution of CL(A) are shown in Table 2.1.3. A thousand runs were used to produce the
original data, and 5,000 runs for the present study. More runs were required to reach a stable
output in the present study due to the larger uncertainty ranges, and this number of runs was
retained as standard in subsequent work.
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Table 2.1.2: SSMB parameters used for original study, Liphook site
Paramete
r Units Mean Lower Upper SD Distribution

Correlation
s

ANCw eq ha-1yr-1 150 50 250 Rectangular 0.9 Caw

BCu eq ha-1yr-1 250 125 375 Rectangular None
Ca dep eq ha-1yr-1 175 0 33 Lognormal None
Ca corr unitless Not used
Ca w eq ha-1yr-1 105 35 175 Rectangular 0.9 ANCw

Ca u eq ha-1yr-1 125 62.5 187.5 Rectangular None
Q m3 ha-1yr-1 3,469 3,125 3,817 Triangular None
[BCl] µeq L-1 1 0 2 Rectangular None
Ca/Alcrit mol mol-1 1 0.5 1.5 Rectangular None
KGibb m6 eq-2 1,025 0 410 Lognormal None
Values which differ from Table 2.1.1 are shaded.

Table 2.1.3: Statistics of Monte Carlo estimates of CL(A) at Liphook, original and new
parameters
Variable Original New
Mean 0.555 0.736
Standard deviation 0.205 0.444
Coefficient of variation (%) 37 60
Median 0.538 0.696
Maximum 1.397 2.933
Minimum 0.112 0.0002
Values are in keq ha-1yr-1.

It is clear from Table 2.1.3 that not only is the critical load greater using the revised estimates, but
the range, standard deviation and coefficient of variation are significantly larger, indicating
greater uncertainty. This is unsurprising, as the uncertainty ranges of the input parameters are
also larger. A sensitivity analysis on the results was also carried out using the methods described
above. The parameters making most contribution to variability (Table 2.1.4) differed considerably
between the runs. A few more parameters were considered for the original data, so the results
are not strictly comparable, but the pattern is clear. In the new run, CL(A) is overwhelmingly most
sensitive to calcium deposition, whereas previously the acid neutralising capacity (ANC) and Ca
weathering rates had the most influence. The critical ratio, Ca/Alcrit, makes about the same
contribution to both runs, but other parameters have little influence in the new run, whereas
originally there were minor contributions from base cation and calcium uptake.

Table 2.1.4: Percentage sensitivity of CL(A) to each parameter
Paramete
r Units Original New

ANCw

eq ha-1yr-

1 25.5 2.5

BCu

eq ha-1yr-

1 6.2 <0.1

Ca dep

eq ha-1yr-

1 5.2
83.8

Ca corr unitless - <0.1

Ca w
eq ha-1yr-

1 26.2
-

Ca u
eq ha-1yr-

1 7.1
2.3
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Q
m3 ha-1yr-

1 <0.1
0.2

[BCl] µeq L-1 <0.1 -
Ca/Alcrit mol mol-1 10.6 11.1
KGibb m6 eq-2 0.5 0.1

This piece of work indicated that two equally reasonable input parameter sets can lead to very
different conclusions about the relative importance of input parameters to uncertainty in output
variables, and the amount of uncertainty to be attributed to the variables themselves. It
highlighted the need to develop an appropriate method for estimating uncertainty in the input
parameters. This was explored as described in the next sections.

2.1.3 Effects of correlation between weathering parameters

In order to explore the reasons for the differences between new and old runs, it was decided to
test the hypothesis that there was some relation with the correlation structure of the input
parameters. The only relevant correlation was that between ANCw and Caw, which was 0.90 in
the old runs (Table 2.1.2), and about 0.42 in the new (see earlier discussion in connection with
Table 2.1.1). A series of Monte Carlo runs was performed with different degrees of correlation
between ANCw and Caw, using the parameters in Table 2.1.1, except that Caw was modelled as a
rectangular distribution with limits 0 and 20 eq ha-1 yr-1 and Cacorr therefore not used. This is
essentially equivalent to the formulation in Table 2.1.1. The correlation coefficients between
ANCw and Caw used in the four runs were 0.0, 0.01, 0.42 and 0.99.

Table 2.1.5: Effect of correlation between ANCw and Caw on CL(A)
Correlation
coefficient (r) 0.0 0.01 0.42 0.99

Mean
0.735
1

0.739
9

0.749
6

0.739
3

SD
0.452
8

0.455
4

0.451
9

0.452
7

CV % 61.6 61.5 60.3 61.2
Values are in keq ha-1yr-1.

As Table 2.1.5 shows, the choice of correlation has no significant effect on the outcome, and is
therefore not a reason for the differences between the runs. This may not of course be true for
parameters to which the outcome is more sensitive. The influence of correlations between
deposition parameters on critical load exceedance is investigated in Section 2.1.5 below.

2.1.4 Effects of changing input parameter uncertainty

Since CL(A) is apparently most sensitive to calcium deposition (Table 2.1.4), it was decided to try
the effect of reducing the spread of  the Cadep input parameter. The parameters were set up as in
Table 2.1.1, except that the CV of the calcium deposition parameter was reduced from an initial
50% to 40%, 30%, 20% and 10% for successive runs. The results are shown in Table 2.1.6. It is
apparent that the CV of CL(A) falls dramatically as the uncertainty in Ca deposition is reduced, as
does the range, largely due to a reduction in the maximum. The mean and median remain
unaffected within the limits of random errors in the Monte Carlo analysis.
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Table 2.1.6: Effect of uncertainty in Ca deposition on uncertainty in CL(A)
CV of Cadep 50% 40% 30% 20% 10%
Mean 0.7509 0.7321 0.7460 0.7421 0.7460
Standard Deviation 0.4557 0.3977 0.3283 0.2606 0.2139
CV 61 54 44 35 29
Median 0.7113 0.6922 0.7036 0.7015 0.7086
Maximum 3.263 2.550 2.267 1.921 1.665
Minimum 0.0002 0.002 0.0001 0.079 0.191
Values are in keq ha-1yr-1.

As the uncertainty in base cation deposition decreases, then naturally other parameters start to
assume greater importance in determining the overall uncertainty. A sensitivity analysis is shown
in Table 2.1.7 below. Calcium deposition remains the biggest contributor to uncertainty until its
CV falls below 20 per cent. Its place as dominant contributor is progressively taken by the critical
ratio, Ca/Alcrit, and to a lesser extent rate of calcium uptake Cau, which remains more important
than weathering, ANCw.

Table 2.1.7: Effect of uncertainty in Ca deposition on percentage contributions of
parameters to overall uncertainty in CL(A)
CV of
Cadep Units

50% 40% 30% 20% 10%

ANCw eq ha-1yr-1 2.8 3.4 2.9 6.2 8.8
BCu eq ha-1yr-1 <0.1 0.1 <0.1 <0.1 <0.1
Cadep eq ha-1yr-1 81.8 78.4 64.9 42.8 14.7
Cau eq ha-1yr-1 3.6 4.1 5.8 10.5 13.8
Q m3 ha-1yr-1 0.2 0.6 0.8 1.0 1.7
[BCl] µeq L-1 <0.1 <0.1 <0.1 <0.1 <0.1
Ca/Alcrit mol mol-1 11.6 13.7 25.5 39.4 60.8
KGibb m6 eq-2 <0.1 <0.1 <0.1 0.1 0.1

Although it is obvious that reducing the uncertainty of the most important input variable will
reduce the overall uncertainty and increase the relative contribution of other parameters, this
model experiment shows the importance of a realistic definition of uncertainty ranges for the key
parameters. Even the ‘optimistic’ estimate of precision of deposition at a given site is a CV of 25
per cent (see Section 3.1), so Ca deposition is likely to be the key parameter at the Liphook site.
In the SSMB model, the critical load is not exclusively a property of the ecosystem but depends
on deposition. These results show that calcium and base cation deposition can be the most
important components of uncertainty in the calculated critical loads. It would be interesting to
attempt to define those ecosystems where this is true.

2.1.5 Effect of correlations between deposition parameters

Input data for this section is given in Tables A2 and A3 in Appendix A. Response variables
include not only CL(A) but all the parameters of the critical load function (Appendix A1.2), that is,
CLmaxS, CLmaxN, and CLminN, and also exceedance. Exceedance is defined as deposition minus
critical load (see Equation A5), and thus for the calculation of exceedance it is necessary to know
the deposition of sulphur, oxidised nitrogen and reduced nitrogen. As seen in Section 2.1.4,
calculation of the critical load itself requires an estimate of non-marine base cation deposition
and calcium deposition. Estimates of the uncertainty in these quantities can be incorporated into
the Monte Carlo analysis as explained in Appendix A. However, the values of the deposition
parameters are clearly not independent of each other – sites with a high deposition of one
parameter will tend to have high depositions of the others because of meteorological controls,
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and because a high proportion of base cation deposition in the UK is seasalt which will therefore
correlate with chloride deposition.

To incorporate this correlation structure into the analysis, product-moment correlation coefficients
between the modelled deposition of these parameters at a 5 x 5 km scale across the UK were
calculated. The data were supplied by Ron Smith, CEH Bush, and the resulting correlations are
given in Table A3. Since the forces causing spatial variation over the UK are the same as those
causing variation at individual sites, this should give a reasonable approximation to an
appropriate correlation structure for input parameters. Including these correlations makes a
considerable difference to some calculated critical loads (Tables 2.1.8 and 2.1.9). As expected,
including correlations makes no difference to the mean values calculated (within the limits of the
random Monte Carlo process), but it reduces the spread of values of exceedance and of CLmaxS
and CLmaxN, whereas CL(A) and CLminN are unaffected. The effects on CLmaxS and CLmaxN
presumably operate via the calcium and base cation deposition parameters which are correlated
with deposition of the acidifying substances. The reduction in spread is considerable; the CV for
CLmaxS reducing from 78 to 50 per cent, for instance. A cumulative distribution function (CDF) for
exceedance is shown in Figure 2.1.1, illustrating that the spread of the calculated results
becomes symmetrically narrower. The CDFs for CLmaxS and CLmaxN are very similar. The pattern
of sensitivity to the input parameters also changes dramatically (Table 2.1.9). For CLmaxS and
CLmaxN, including the correlations almost removes the sensitivity to atmospheric parameters,
including base cation deposition. For exceedance, the balance shifts from atmospheric to
terrestrial parameters once deposition correlations are included, and the dependence on base
cation deposition almost disappears. This work shows that intercorrelations between deposition
parameters are important and should be included in analyses if the data are available to do so.

Table 2.1.8: Effect of including deposition correlations on critical loads
Param
.

CLmaxS CLminN CLmaxN CL(A) Exceedance

1Corre
l.

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

Mean
568

560 786 786 135
3

1346 372 371
217

210

SD 285 435 88 87 265 421 193 192 340 459
CV % 50 78 11 11 20 31 52 52 - -
1Values shown are from Monte Carlo analysis with or without correlations between deposition
parameters. Units are eq ha-1yr-1.
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Table 2.1.9: Effect of including deposition correlations on sensitivity
Param
.

CLmaxS CLminN CLmaxN CL(A) Exceedance

1Corre
l.

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

Wit
h

Witho
ut

BCw 7.6 4.5 10.6 5.4 25.1 25.6 6.0 4.7
BCu 33.3 20.1 15.7 16.6 30.9 16.0 22.7 23.6 19.8 15.9
Bcw
Bcu 33.3 19.7 12.9 13.9 32.6 16.3 29.3 29.5 20.1 16.0
Bc/Alcrit 0.9 0.5 1.4 0.7 2.4 2.1 0.9 0.6
Kgibb 0.5 0.8 1.2 0.8
Q
Nu 18.2 10.9 30.5 30.1 11.0 5.9 12.0 13.3 8.9 7.0
Ni 36.6 35.8 3.4 1.7 0.6 0.5
Nde 4.0 3.3 0.8
2Catch 93.8 55.7 99.7 99.7 91.5 46.0 92.7 94.9 56.3 44.7
Sdep 1.8 2.7 1.3 8.0 9.2
NH4dep 10.7 3.6
NO3dep 0.5 14.1 1.3
*BCdep 1.6 24.2 2.1 29.3 0.6 2.1 24.8
Bcdep 1.4 0.9 2.0 1.1 3.3 4.4 4.6 0.9
Cldep 0.9 18.7 1.1 23.1 0.7 3.4 15.1
3Dep 5.7 43.8 0.0 0.0 7.9 53.5 6.4 4.4 42.9 54.9
Units are percent contribution to uncertainty. 1Values shown are from Monte Carlo analysis with
or without correlations between deposition parameters. 2Sum of catchment parameters. 3Sum of
deposition parameters. Values less than 0.5 are not shown – hence totals do not add exactly to
100%.

Figure 2.1.1: Cumulative distribution function for exceedance at the Liphook site, with and
without correlations between deposition parameters
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2.1.6 Deposition distributions

A related question when calculating exceedance is the appropriate distribution for deposition
parameters. This project used both lognormal and normal distributions to represent the range of
variation in deposition. The normal distribution has the disadvantage that it extends to infinity in
both directions, thereby including negative values which are physically impossible. Though the
lognormal distribution cannot become negative, it may generate values at the extremes which are
physically close to impossible. Distributions truncated at ± 2 standard deviations have been used
for both catchment and atmospheric parameters to avoid these problems, but it would be useful
to have less arbitrary criteria for choosing distributions.

In previous work for the Environment Agency, J.A. Abbott performed a Monte Carlo analysis of
the TRACK Model for a number of sites, and showed that for S and reduced N the model
generated a distribution which was lognormal, and in which the 95th percentile was typically
around 1.5 times the mean, and the mean in turn was about 1.5 times the 5th percentile. For
oxidised N, the 95th percentile was typically around two times the mean, and the mean in turn
was about two times the 5th percentile. A distribution with these properties can be set up for
Monte Carlo analysis in Excel, and gives intuitively satisfying distributions which stay away from
zero. This was done as follows:

If we call the mean of a distribution M, then for a normal distribution, the 95th percentile
corresponds to M + 1.645*SD. The 5th percentile corresponds to M - 1.645*SD. If the 95th
percentile is twice the mean and  ln(x) is normally distributed, then

SD = ln(2)/1.645 = 0.4213.

Note that ln(2M) = ln(2) + ln(M) = 1.645*SD + ln(M). Hence, if the standard deviation of the
lognormal distribution is 0.4213, the 95th percentile is always twice the mean irrespective of the
mean value.
 
Similarly, if the 95th percentile is 1.5 times the mean, the appropriate standard deviation is
ln(1.5)/1.645 = 0.2465.

Therefore, for modelled deposition, subsequent work used these distributions, that is lognormal
distributions with a standard deviation of 0.2465 for S and reduced N, and lognormal distributions
with a standard deviation of 0.4213 for oxidised N.

2.1.7 Terrestrial parameter distributions

The distributions for catchment parameters also need to be chosen. Usually the only basis for
this is expert judgement (see Skeffington, 2006; Skeffington et al., 2006), but it would be useful to
investigate the sensitivity of the outcomes to different choices. A complete sensitivity analysis
would obviously be impractical, so it was decided to run a Monte Carlo analysis with identical
deposition where the distributions of the input parameters were: (a) all rectangular; (b) all
triangular; (c) all normal; (d) all normal but truncated at two standard deviations. Means were
identical, and the ranges were set to be the same for rectangular and triangular distributions and
to correspond to two standard deviations for the normal and truncated normal distributions. Input
parameters are shown in Tables A5 and A6, and the results in Tables 2.1.10 and 2.1.11.
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Table 2.1.10: Effect of different distribution types on critical load and exceedance
statistics
Param. CLmaxS CL(A)
1Distri
b.

Rect Trian
g

Norm TNorm Rect Trian
g

Norm TNorm

Mean 711 693 703 683 451 433 442 431
SD 241 181 216 191 187 135 165 144
CV % 34 26 31 28 41 31 37 33
10 %ile 403 460 428 441 214 259 236 246
90 %ile 1,024 929 979 938 697 610 647 618
Param. CLmaxN CLminN
1Distri
b.

Rect Trian
g

Norm Tnorm Rect Trian
g

Norm Tnorm

Mean 1,496 1,477 1,487 1,475 785 784 785 785
SD 226 170 203 179 87 61 77 66
CV % 15 12 14 12 11 8 10 8
10 %ile 1,210 1,262 1,235 1,246 667 705 687 698
90 %ile 1,792 1,699 1,747 1,706 904 864 883 872
Param. Exceedance
1Distri
b.

Rect Trian
g

Norm TNorm

Mean 77 88 77 81
SD 295 260 281 258
10 %ile -292 -227 -270 -236
90 %ile 466 445 444 423
Units are eq ha-1yr-1.  1Distributions are rectangular, triangular, normal and normal truncated at
two standard deviations.

Table 2.1.10 shows the effects of different distribution types on various critical load statistics. As
would be expected, the rectangular distribution gives wider spreads (higher CVs) than the other
distributions in which the central value is more probable than the extremes. For each of the
critical loads, and for exceedance, the order measured by spread is rectangular > normal >
truncated normal > triangular. This order applies also to the 10th and 90th percentiles. Only for the
most extreme values does the normal distribution give a wider spread than the rectangular, again
as would be expected since there is no constraint on the upper bound of a parameter given a
normal distribution. The differences between the distributions are not, however, huge. Employing
one distribution or another would not lead to qualitatively different conclusions.

The effect of different distribution types on input parameter sensitivity is shown in Table 2.1.11.
Again the patterns of sensitivity are very similar between the distributions, though the order of
importance changes in some cases. In particular, base cation weathering is relatively more
important with rectangular distributions, and calcium uptake (Bcu) relatively less important. For
exceedance, terrestrial catchment parameters are slightly more important with the rectangular
distribution than with the other distributions. Once again, the differences between different
distribution types are not huge. The conclusion from this work is that although the most
appropriate distribution type should be selected, the results are not very sensitive to the choice of
type, at least if the extremes of the output distributions are avoided. Peaked distributions will give
smaller spreads than rectangular ones.
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Table 2.1.11: Effect of different distribution types on sensitivities to input parameters
CLmaxS CL(A) CLmaxN

1Distri
b

Rect Tria
n

Nor TNor Rect Tria
n

Nor TNor Rect Tria
n

Nor TNor

BCw 17.0 13.1 13.6 12.0 38.6 21.9 31.0 27.8 22.6 18.3 19.1 17.7
BCu 19.8 23.4 25.1 23.6 5.9 13.5 14.8 13.9 11.8 17.3 18.8 17.3
Bcw
Bcu 18.9 23.7 24.7 23.9 7.2 16.3 17.0 16.9 12.1 18.9 19.9 19.0
Bc/Alcrit 5.3 2.6 3.5 3.5 11.7 5.6 6.7 7.0 6.9 3.4 4.8 5.1
Kgibb 0.9 0.6 1.6 0.9 1.3 0.8 1.1 0.5 0.9 0.5
Q
Nu 10.7 14.0 14.3 14.1 3.0 7.9 8.5 8.2 2.5 5.8 5.8 5.7
Ni 5.6 4.8 4.2 4.1
Nde 0.5 0.5
2Catch 72.6 76.8 81.8 77.1 68.0 66.1 79.3 74.6 63.1 69.0 74.0 69.4
Sdep 10.1 8.6 6.9 8.0 7.7 6.7 5.1 6.0 13.6 11.4 9.5 10.4
NH4dep 0.9 0.9
NO3dep 2.3 2.6 1.7 2.2
*BCdep 6.0 4.6 3.7 4.7 3.5 2.3 1.9 2.6 7.9 6.2 5.4 6.5
Bcdep 7.3 6.4 5.0 6.3 12.8 11.2 8.4 10.3 9.9 8.9 7.1 8.3
Cldep 3.4 2.6 2.1 3.0 3.6 2.5 1.9 2.9 4.5 3.5 3.1 4.1
3Dep 26.8 22.2 17.7 22.0 30.8 25.3 19.0 24.9 35.9 30.0 25.1 29.3

CLminN Exceedance
1Distri
b

Rect Tria
n

Nor TNor Rect Tria
n

Nor TNor

BCw 10.1 6.0 7.6 6.9
BCu 16.5 17.2 17.8 17.8 10.7 7.4 9.1 8.2
Bcw
Bcu 13.4 13.8 14.3 14.0 12.0 7.5 10.0 9.0
Bc/Alcrit 2.3 1.5 1.8 1.8
Kgibb
Q
Nu 35.8 35.5 30.3 30.8 4.4 3.0 4.1 3.3
Ni 30.0 29.8 34.0 33.2 1.0 0.8 0.7 0.7
Nde 3.9 3.7 3.5 3.7
2Catch 99.6 100.

0
99.9 99.5 40.5 26.2 33.3 29.9

Sdep 10.2 12.3 10.6 11.7
NH4dep 14.1 18.4 16.8 17.1
NO3dep 18.5 24.3 22.9 23.0
*BCdep 3.9 4.0 3.6 4.0
Bcdep 6.5 8.0 6.5 7.4
Cldep 5.4 6.2 5.7 6.1
3Dep 0.0 0.0 0.0 0.0 58.6 73.2 66.1 69.3
Units are percent contribution to uncertainty. 1Values shown are from Monte Carlo analysis with
varied distribution types. 2Sum of catchment parameters. 3Sum of deposition parameters. Values
less than 0.5 are not shown – hence totals do not add exactly to 100%.

2.1.8 Comparisons of different sites

After extensive investigation of the Liphook site, work was extended to other coniferous forest
sites: Thetford in Eastern England (Grid Ref. 5954 2382) and Aber in North Wales (Grid Ref.
2675 3505). These are research sites with contrasting attributes and deposition regimes. Monte
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Carlo analysis was carried out as before. The catchment input parameters are shown in Table
A5, and the deposition parameters in Table A6. As discussed above, the input parameters are
crucial to the outcome. Both Barkman and Alveteg (2001) and Skeffington (2006) proposed that
input parameters should have a ‘pedigree’ attached to them, to distinguish the qualities of input
data. In these cases, the pedigree would be unusually good as these are research sites, but
nevertheless some are expert judgement by the authors with no supporting data. This applies to
Nde and Ni at Liphook and Thetford, BCw at Liphook, and Cacorr and Nu at Thetford. Some are
based on expert judgement by several experts, such as Bc/Alcrit, which is effectively Ca/Alcrit,
(Cronan and Grigal, 1995), and Kgibb, which is based on the range for the relevant soil type in
UBA (2004). Some are based on measurements, such as Nde and Ni at Aber, and BCu and Nu at
Liphook and Aber. Some are based on modelling supported by measurements, such as BCw at
Thetford and Aber which were derived from modelling with PROFILE (Warfvinge and Sverdrup,
1992). Modelling supported by measurement was also used to generate all the values of Q and
deposition at Liphook and Aber. Deposition at Thetford was purely modelled, and the distribution
used is described in Section 2.1.6. The choice of distribution type was mostly expert judgement,
and correlations were derived from measurements at Liphook and used at the other sites. One
hypothesis to be tested in this work was that the relative sensitivity of the critical loads to different
input parameters would remain about the same. This would mean that research to narrow these
uncertainties could be targeted at only a few quantities. Another was to compare the ranges of
uncertainty in critical loads and exceedances at the three sites to determine whether the different
conditions involved led to different conclusions. Uncertainty statistics are shown in Table 2.1.12.
Cumulative distribution functions for CLmaxS, CL(A), and exceedance are shown in Figures 2.1.2
and 2.1.3.

Table 2.1.12: Uncertainty statistics from three coniferous forest sites
Liphook Thetford Aber

Param
.

Mean SD CV
(%)

Mean SD CV
(%)

Mean SD CV
(%)

CLmaxS 568 285 50 11,580 4,054 35 1,883 518 27
CLminN 786 87.6 11 353 67.1 19 431 22.5 5
CLmaxN 1,353 265 20 11,930 4,053 34 2,315 515 22
CL(A) 372 193 52 11,660 4,052 35 1,804 474 26
Excee
d

217 340 - -8,409 4,138 - 1,284 612 -

Units are eq ha-1yr-1.
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The lowest CVs at each site are for CLminN, which requires only three parameters – they are
particularly low at Aber where uncertainty in the input parameters is reduced by the availability of
measurements. At Liphook and Aber, the CV of CLmaxN is lower than that of CLmaxS and CL(A)
even though CLmaxN has more parameters. This is observed in most studies, and is probably due
to a ‘compensation of errors’ mechanism. At Thetford, the uncertainty in the large weathering rate
term dominates all other input uncertainties, and the uncertainty is the same for CLmaxN, CLmaxS
and CL(A). At all sites, the uncertainty in the output terms is less than that in most of the input
terms. The cumulative distribution functions for CL(A) and CLmaxS,  as seen in Figure 2.1.2, cover
a wide range and have long tails. The range is greater for Aber than Liphook, though the
absolute value is greater at Aber.

 Figure 2.1.2: Cumulative distribution function for CL(A) and CLmaxS at Liphook and Aber

The cumulative distribution function for exceedance is shown in Figure 2.1.3.
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Figure 2.1.3: Cumulative distribution function for exceedance at three coniferous forest
sites

There is a finite probability of exceedance at all three sites: about 95 per cent at Aber, 68 per
cent at Liphook and two per cent at Thetford. It is noteworthy that a few Monte Carlo runs cause
exceedance at Thetford even though the limestone geology produces a very large critical load.
To demand very high probabilities for non-exceedance as a precautionary regulatory criterion
would thus seem to be unwise. The long tails on these graphs imply that it would be expensive or
difficult to achieve very high probabilities of protection, even just taking into account parameter
uncertainty.

Table 2.1.13 shows the sensitivity of the output parameters to the input parameters at the three
different sites. Different input parameters are important at different sites. At Thetford, a
calcareous site, uncertainty in the weathering rate term dominates and only the critical ratio
Bc/Alcrit is also important. At Liphook, base cation deposition and uptake have the most influence,
with weathering in a secondary role. At Aber, Bc/Alcrit is most important, followed by base cation
and calcium deposition and also Kgibb, which does not appear elsewhere. Total chloride
deposition was measured only at Liphook, and is important there for CLmaxN and CLmaxS, but not
CL(A). At least one output parameter is sensitive (> 0.5%) to every input parameter in Table
2.1.13 except Q. It is easy to imagine that where good estimates of run-off are not available, Q
would feature too. Uncertainty in deposition is immaterial to all output parameters at Thetford,
whereas at Aber it is as important as the terrestrial parameters to CLmaxS and CLmaxN and more
important to exceedance. CLminN is sensitive to the three nitrogen sink variables, the sensitivity
being more or less proportional to their means and ranges. The apparent sensitivity to base
cation and calcium uptakes is an intercorrelation effect, as these parameters are correlated with
N uptake. This also accounts for the apparent influence of N uptake on CLmaxS and CLmaxN. Aber
is a managed forest on an organo-mineral soil, and the UK critical load methodology (Hall et al.,
2004) requires the applications of ground rock phosphate typically received by such sites to be
taken into account. This is shown as “fertiliser” in Table 2.1.13, and contributes about 50 per cent
more uncertainty than base cation weathering, which is the other source of base cations at Aber.
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Uncertainty analysis can be used to direct research toward narrowing uncertainties in the most
influential input parameters, but these results indicate that the importance of input parameters
varied with site, even with this restricted sample of three contrasting sites. Potentially, any
parameter could have an important influence. It may be that there are classes of site in which
there are similar patterns of importance, but to reveal this would require the analysis of more
sites. It is clear that at some sites, perhaps those like Aber where base cation deposition is high
compared to the weathering rate, a good estimate of base cation deposition is essential for
accurate critical load estimation (quite apart from the estimate of exceedance). The issue of
whether there is a class of ecosystems where critical loads are more likely to be sensitive to base
cation deposition than weathering rates is explored further in Section 3.2. The same three sites
were used for a comparison of national and site-specific input data (Section 4) and to estimate
uncertainty distributions to be applied to coniferous forest sites in the whole of South East
England (Section 5).
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2.1.9 Critical loads for heathland and unmanaged woodland

The SSMB model can also be used to calculate critical loads for ecosystems other than
coniferous forest. Managed deciduous forest is calculated in the same way, with different values
for base cation and nitrogen uptake, and hence is unlikely to yield different results. Unmanaged
forest is calculated using the SSMB, but without the uptake terms. Heathland and grassland
could be calculated in the same way, but in the UK an empirical method is used in which a critical
load is ascribed depending on the weathering rate of the dominant soil type, modified by various
factors (see Hall et al., 2003a, 2004a for methods). It was therefore decided to apply both the
modified SSMB (without uptake terms) and the empirical method to a heathland site. This could
serve as a comparison of methods, but also the SSMB could stand as surrogate for an
unmanaged forest. The site chosen was the CEH climate change research site (Climoor) near
Corwen in North Wales (Grid Ref. 3015 3515). Input parameters were as shown in Tables A7
and A8, and were based on CEH data. The crucial BCw parameter is based on the range of
measurements of weathering rates of similar soil types in Wales using Ti/Zr methods, and of
calculations using PROFILE (Warfvinge and Sverdrup, 1992) on the same soils.  Critical load
statistics are shown in Table 2.1.14, and a sensitivity analysis in Table 2.1.15.

Table 2.1.14: Uncertainty statistics for a heathland site at Climoor by two different
methods

SSMB method Empirical method
Param
.

Mean SD CV
(%)

Mean SD CV
(%)

CLmaxS 1,378 379 28 690 254 30
CLminN 284 66 23 284 66 23
CLmaxN 1,662 386 23 974 262 27
CL(A) 1,239 368 30 550 252 46
Excee
d

1,006 705 - 1,690 723 -

 Units are eq ha-1yr-1.

The mean critical loads using the empirical method are lower than the SSMB Method, because
each critical load is aimed essentially at protecting different aspects of the ecosystem (base
saturation for the empirical method, Ca/Al ratio for the SSMB method). Exceedance is
correspondingly higher for the empirical method. The standard deviation of the empirical method
is lower than the SSMB, because the uncertainty of the method depends on uncertainty in only
one parameter (BCw) for CL(A) and two (BCw  and BCdep) for CLmaxS  and CLmaxN. The CVs tend,
however, to be slightly higher because of the lower means of the empirical method.

The empirical method is applied somewhat differently to the SSMB, in that the dominant soil
within each kilometre square is allocated to one of five critical load classes, based on the
mineralogy and weathering rate. Each class represents a range of critical load values (< 0.2, 0.2-
0.5, 0.5-1.0, 1.0-2.0, > 2.0 keq ha-1yr-1).  This method is applied to all squares dominated by
mineral or organo-mineral soils. For the calculation of exceedances, the midpoint critical load
value of each class is used. The Monte Carlo analysis can thus be used to ask what the
probability is of a site being allocated to one or other of these classes. For Climoor, 10% of the
CL(A) values would lie in the lowest class and be given a critical load of 100 eq ha-1yr-1; 34% in
the next lowest class (350 eq ha-1yr-1); and 56% in the next lowest class (750 eq ha-1yr-1).

Acidity critical loads for squares dominated by peat soils are based on a version of the SSMB
using soil pH as the chemical criterion (see Hall et al, 2003a, 2004a for methods) – these are not
covered by this report.
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Table 2.1.15: Sensitivity analysis for a heathland site at Climoor by two methods
Paramet
er

CLmaxS CLminN CLmaxN CL(A) Exceedance

Method SSM
B

Emp. SSM
B

Emp. SSM
B

Emp. SSM
B

Emp. SSM
B

Emp.

BCw 50.8 95.4 49.2 90.7 58.3 99.8 8.3 5.6
Bcw 0.6 0.5 0.7
Bc/Alcrit 19.1 18.8 21.8 3.0
Kgibb 3.7 3.7 4.2 0.6
Q
Ni 90.4 90.8 2.6 5.1 0.5
Nde 9.5 8.9 0.5
1Catch 74.2 95.4 99.9 99.7 74.8 96.3 85.0 99.8 12.4 5.6
*Sdep 3.2 0.5 3.2 1.8 25.3 24.9
*BCdep 7.8 1.6 7.6 1.3 4.5 12.6 15.6
Bcdep 7.8 1.5 7.5 1.2 4.5 12.2 15.3
NO3dep 4.8 0.7 4.7 0.6 2.8 23.4 24.8
NH4dep 1.8 1.8 1.1 13.6 13.3
2Dep. 25.4 4.3 0.0 0.0 24.8 3.1 14.7 0.0 87.1 93.9
Units are percent contribution to uncertainty. 1Sum of catchment parameters. 2Sum of deposition
parameters. Values less than 0.5 are not shown – hence totals do not add exactly to 100%.

Table 2.1.15 shows a sensitivity analysis for heathland at the Climoor site using both methods.
As expected, CL(A) for the empirical model is exclusively sensitive to uncertainty in BCw,
whereas the SSMB is sensitive to other parameters, though BCw is still the most important. The
absence of the uptake parameters emphasises the importance of BCw (compare Aber and
Liphook, Table 2.1.13, where the uptake parameters dominate). However, the most striking result
in Table 2.1.15 is that for both methods, uncertainty in deposition makes a much greater
contribution to exceedance than uncertainty in the terrestrial parameters. This is similar to Aber
(Table 2.1.15), another site with a high deposition load, though the magnitude of the effect at
Climoor is surprising.

Critical loads for unmanaged woodland at Climoor (if there were any) would be calculated in the
same way as the SSMB results in Tables 2.1.14 and 2.1.15. The above discussion can also be
taken as a comparison between critical loads for heathland and unmanaged woodland on the
same site. Heathland critical loads will always be lower than woodland critical loads calculated by
this method, but the patterns of sensitivity may vary from site to site in the same way as
coniferous woodland critical loads.

2.1.10 Critical loads for nutrient nitrogen

UNECE recommend two approaches to calculating critical loads for nutrient nitrogen (see UBA,
2004). The first is a steady state mass balance approach in which the long-term inputs and
outputs of nitrogen from the system are calculated, with the critical load being exceeded when
any excess nitrogen input is calculated to lead to exceedance of a critical rate of nitrogen
leaching. The critical load is thus the sum of nitrogen uptake, immobilisation, denitrification, and
the acceptable nitrogen leaching, as explained in Appendix A. In the UK, this method is applied
to managed woodlands (coniferous and deciduous) only. The second is an empirical approach, in
which critical loads are estimated for different ecosystems based on experimental or field
evidence of thresholds for change in species composition, plant vitality or soil processes.
Empirical critical loads come with a rough estimate of reliability (in increasing order, ‘expert
judgement’, ‘quite reliable’ and ’reliable’) and estimating uncertainty for these would involve
quantifying these terms. There seems no objective way to do this, and hence this section is
concerned only with quantifying the uncertainty in the mass balance approach as applied to
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woodlands. Liphook and Aber were chosen as example sites, and input parameters were as
shown in Table A9. Uncertainty statistics are shown in Table 2.1.16.

 Table 2.1.16: Uncertainty statistics for nutrient nitrogen critical loads at two sites
Site Liphook Aber
Param
.

Mean SD CV
(%)

Mean SD CV
(%)

CLnutN 1071 152 14 638 132 21
Excee
d

-109 287 - 1614 579 -

Units are eq ha-1yr-1.

Critical loads for nutrient nitrogen at Liphook are higher because of higher uptake and
immobilisation values. Exceedance is much greater at Aber because of the lower critical load and
much higher deposition of ammonium and nitrate (Table A10). The coefficients of variation are
quite low at 14 and 21 per cent – lower at Liphook largely because of the higher critical load.
Cumulative distribution functions (CDFs) for CLnutN and exceedance are shown in Figures 2.1.4
and 2.1.5. As seen with the acidity critical loads, the range is quite wide and the tails of the
distributions are long. The nutrient nitrogen critical load can be said to be exceeded at Aber with
100 per cent confidence (Figure 2.1.5). At Liphook, although the mean shows no exceedance,
the CDF indicates a 30 per cent chance that the critical load is, in fact, exceeded. Also shown on
Figure 2.1.5 are cumulative normal distributions with the same mean and standard deviation as
the experimental data. The cumulative normal distribution appears to be a reasonably close fit:
closer at Liphook than Aber. This may be a manifestation of the Central Limit Theorem, and
could be useful for modelling exceedances.
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Figure 2.1.4: Cumulative distribution functions for CLnutN at Liphook and Aber

Figure 2.1.5: Cumulative distribution functions for exceedance of CLnutN at Liphook and
Aber
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Table 2.1.17 shows a sensitivity analysis for CLnutN and exceedance at Liphook and Aber.

Table 2.1.17: Sensitivity analysis for nutrient N critical loads at two sites
Paramet
er

CLnutN Exceedance

Method Liphook Aber Liphook Aber
Nu 12.9 18.9 5.0 1.4
Ni 13.4 2.0 4.8
Nde 2.7 1.6 1.2
Nle(acc) 70.8 77.4 25.2 5.5
1Catch 99.8 99.9 36.2 6.9
NO3dep 42.5 61.8
NH4dep 21.3 31.1
2Dep. 0.0 0.0 63.8 92.9

Uncertainty in acceptable N leaching dominates the uncertainty in CLnutN.  For exceedance,
deposition parameters are more important, especially at Aber where deposition is larger and the
critical load is smaller.

2.1.11 Conclusions (terrestrial ecosystems)

• The results for terrestrial ecosystems reflect a lot of experimentation with methodology
and development of the most appropriate techniques and parameters for estimating
uncertainties.

• In agreement with previous work, output parameter uncertainties have a universal
tendency to be narrower than input uncertainties, presumably due to a ‘compensation of
errors’ mechanism.

• Equally reasonable parameter sets for the same sites can lead to somewhat different
conclusions in terms of magnitudes of output uncertainties and relative importance of
various input parameters.

• As an example of the above, the CV of the critical load for acidity at Liphook was 37 per
cent in the previous work for the Environment Agency (which used measured
parameters), but 60 per cent with revised (national default) parameters. In previous work,
weathering was the most important input parameter, but with the revised parameters it
was calcium deposition.

• This highlights the importance of a good estimate of calcium and base cation deposition
for critical load calculation.

• Calcium deposition is likely to be more important than calcium weathering at sites with
low critical loads. This is borne out by the national-scale analysis (Section 3.2).

• Intercorrelation between input parameters must be considered. Incorporating correlations
between deposition parameters reduced the spread of the results and the influence of
deposition uncertainty on output parameter uncertainty, especially for CLmaxS and CLmaxN.
In contrast, the results for the Liphook site were not sensitive to correlation between the
weathering rate parameters.

• Choice of an appropriate statistical distribution to represent deposition proved to be
difficult. A particular form of the lognormal distribution gave good results for modelled
deposition, but other distributions were also used.

• The results were only somewhat sensitive to choice of distribution type for terrestrial
parameters (from rectangular, triangular, normal and truncated normal). This is useful,
because there is rarely any basis other than expert judgement to select terrestrial
parameter distributions.

• Application of the SSMB model to three contrasting coniferous sites showed that virtually
any input parameter could be significant in determining output parameter uncertainty.
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Thus, it is not easy to target research towards narrowing uncertainties except on a site-
specific basis.

• However, several runs show that on-site measurements can be used to narrow
uncertainties. This could be useful at valuable or disputed sites.

• Output distributions typically seem to have long tails, and look roughly normal, although
this has been tested only on a few runs. The long tails on these graphs imply that it would
be expensive or difficult to achieve very high probabilities of protection, even just taking
into account parameter uncertainty.

• Uncertainties in critical loads at a heathland site, calculated according to the UK empirical
method, show an exclusive dependence on weathering rate. Uncertainties in exceedance
depend much more on deposition. This is a high deposition site, so this pattern may be
different elsewhere.

• These empirical critical loads are normally expressed as one of five classes rather than in
numerical form. The site had a 10 per cent probability of being in the lowest class, 34 per
cent  in the next lowest and 56 per cent  in the next. These results could be useful for
further analysis.

• Critical loads for heathland can also be calculated by the SSMB method, and this is the
method used for unmanaged woodland. Here the base cation:aluminium ratio is important
as well as weathering rate, and base cation deposition also features. The critical loads
are higher than the empirical method, and the spread (CV) slightly lower, except for
exceedance.

• The critical load for nutrient N has been calculated by the mass balance method for two
example sites. The CVs were quite low, and the method at these sites was most sensitive
to the definition of acceptable nitrogen leaching. For exceedance, deposition parameters
were more important, at the high deposition – low critical load site.

2.2 Uncertainty in critical loads for freshwaters
2.2.1 Introduction

The First Order Acidity Balance Model (FAB) model is now the method of choice in the UK for
calculating freshwater critical loads. The model is derived from a combination of charge and
mass balance approaches as described in Posch et al. (1997), Henriksen and Posch (2001) and
UBA (2004). The implementation of the model in the UK is described in Hall et al. (1998, 2003ab,
2004a). The critical load criterion is acid neutralising capacity (ANC).  The most common criterion
value is 20 µeq L-1, and although the UK originally used zero, it now uses 20 µeq L-1 except
where there is evidence that the pre-industrial ANC was less than this (Hall et al., 2004a: Section
5). The essential idea of the FAB model is that catchments should be able to supply enough ANC
to maintain at least the criterion ANC concentration indefinitely. Various routines and
assumptions are used to calculate the sinks of deposited S and N in terrestrial catchments and
lakes (if any), and the base cation supply from catchment and atmosphere. From this, the
combinations of S and N deposition which result in the water draining the catchment meeting the
critical load (that is, the critical load function, Appendix A) can be calculated.

The FAB model and its implementation in this study is described in detail in Appendix A. FAB is
the most complex of the critical load models, with 18 input parameters and dependent on a
complex set of assumptions and empirical equations derived from different parts of the world. This
might thus be expected to be reflected in the overall model uncertainty.

2.2.2 Application of FAB to the UK Acid Waters Monitoring Network
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It was decided to use as test data the UK Acid Waters Monitoring Network (AWMN). The data
were kindly supplied by Dr Chris Curtis of ENSIS at the Department of Geography, University
College London. The AWMN has been in operation since 1988 and consists of 22 sites chosen to
represent a range of acid-sensitive habitats. Stream sites are sampled 12 times a year, and lake
sites four times. The geographical distribution of sites is shown in Figure 2.2.1. Using the AWMN
has the advantage that:

• there is a long run of quality-assured data;
• the habitats are all potentially acid-sensitive;
• the network deliberately includes a variety of habitats, such as lakes and streams, non-

forested, coniferous and broad-leaved forest, uplands and lowlands;
• the data required for FAB were all available.

The AWMN is described in a recent Special Issue of Environmental Pollution (see Monteith and
Evans, 2005). A detailed description of how FAB was implemented for Monte Carlo analysis will
be found in Appendix A.
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Figure 2.2.1: The UK Acid Waters Monitoring Network
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2.2.2.1 Choice of parameter values

The results of Monte Carlo analysis are heavily influenced by the choice of parameter distributions
and ranges. In this section we discuss the reasons for these choices. The values chosen for the
parameters are shown in Tables 2.2.1 to 2.2.2.

Run-off (Q)
It was assumed that run-off in ungauged catchments is known to ± 10 per cent. Run-off is a
function of precipitation and evapotranspiration, both reasonably well known in the UK, though
some catchments may lose or gain water underground. Some catchments in the AWMN are in
fact gauged (such as the Gwy and the Hafren) and here the run-off is known to within two to five
per cent, but the 10 per cent spread was kept the same for this exercise for comparative
purposes. A triangular distribution was used, reflecting lack of knowledge of the distribution type
but a feeling that the central value was more likely. This is the reason for use of all the triangular
distributions below. The spread of values for run-off does not include year-to-year variation.

Catchment area (A)
Catchment areas are derived from digital terrain models (DTMs) which are now accurate to a few
metres. It is well known, however, that topographic catchments may not coincide with
hydrological ones, and in gently sloping terrain even topographic catchment may be hard to
define exactly. It was thought, however, that the use of DTMs allowed ± 5 per cent  error on
overall catchment area, with a triangular distribution.

Lake area (A lake)
Lake area is known with reasonable accuracy, as lake boundaries are easy to identify from aerial
and satellite photographs. Lake areas fluctuate somewhat with hydrological conditions (though
not by much in the case of these upland lakes). Once again, an error of ± 5 per cent with a
triangular distribution was thought appropriate.

Vegetation areas
The areas of managed and unmanaged coniferous and broad-leaved woodland are used as
inputs to the FAB calculations. These are identified from national databases as explained in
Section 4, except that for the AWMN catchments local knowledge is also used. Even with local
knowledge there is some uncertainty over definitions, so it was thought appropriate to use ± 10
per cent with a triangular distribution as the uncertainty bounds for all types of vegetated areas in
these catchments. This is perhaps a little generous, and the bounds would be wider for
catchments with no local data.

Nitrogen uptake (Nu)
Nitrogen uptake was parameterised at the UK default values of 0.42 keq ha-1yr-1 for managed
broadleaves and 0.21 keq ha-1yr-1 for managed conifers. Nitrogen uptake by real forests will vary
quite a lot – it is not known how much, though the data probably exist to make an estimate. Since
there is no reason to believe the central value is any more accurate than the extremes, a
rectangular distribution was used with a spread of ± 50 per cent on the default values, as
employed in work on the SSMB equation (see above).

Nitrogen immobilisation (Ni) and denitrification (Nde)
Nitrogen immobilisation and denitrification are both calculated from area-weighted means of
default values attached to different soil types. Errors thus arise in assignment of the default
values to the soil types, and identification of the soil types on the ground. There seems little or no
objective way to judge the accuracy and precision of these estimates, especially Ni which is the
long-term sustainable value rather than the present value, which is likely to be much greater. As
with Nu, a rectangular distribution was used for Ni and Nde with a spread of ± 50 per cent on the
default values. This is fairly arbitrary.
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Mass transfer coefficients (SN and SS)
The mass transfer coefficients are used to calculate in-lake S and N retention. The original
authors calculated a range for these values (reproduced in UBA, 2004) based on studies in
various lakes. The range was 2 to 8 m s-1 for SN, and 0.2 to 0.8 m s-1 for SS. Rectangular
distributions with these limits were therefore used.

Pre-industrial sulphate calculation (a and b)
Pre-industrial non-marine sulphate (*SO4

2-
0) is calculated from present day non-marine base

cation concentrations (*BCt) by an equation of the form (*SO4
2-

0) = a + b*BCt . The parameters a
and b are derived from empirical observations of a range of lakes with differing current S
depositions. Henriksen and Posch (2001) give a number of different equations where a ranges
from 8 to 19 µeq L-1 and b from 0.08 to 0.17. These values were therefore used except where the
current non-marine sulphate concentration was less than 8 µeq L-1, when the range of a was
scaled down to 5 to 12 µeq L-1. Rectangular distributions were once again used.

Present-day observed concentrations (*SO4
2-

t, *BCt and NO3
-
t)

Present day concentrations are used in FAB to estimate the pre-industrial base cation weathering
and deposition rates, as explained above. The analytical error on a single measurement of these
parameters is quite small (no more than five per cent). However, since streams and lakes are
naturally variable, and a single measurement can be used to estimate the critical load (and is, for
the majority of UK sites), it was thought appropriate to use this variability as the uncertainty
estimate. As each site in the AWMN has 13 annual mean values at present, the mean and
standard deviation of these annual means was calculated for each of these parameters. Use of
the individual values would have led to somewhat greater standard deviations. Visual inspection
suggested the distributions were close to normal. For input to the uncertainty analysis, the 13-
year mean was thus used as a central value, with a normal distribution with the observed
standard deviation. However, since normal distributions extend to ± infinity, negative
concentration values are clearly meaningless, and there are chemical limits which constrain the
possible range of concentrations; it was thus decided to truncate the distributions at two standard
deviations (or at zero if this was less than two standard deviations from the mean). If the
distribution was truly normal, this would comprise 95 per cent  of the distribution in any case, and
truncating prevents unrealistic extreme values from biasing the results. The uncertainty range on
these parameters, therefore, is the uncertainty which might be expected if only one year was
sampled.

Correlations
The correlation structure of the input variables is an important factor in computing the overall
uncertainty. Correlations between variables are likely to be restricted to the three concentration
variables in the paragraph above. Product-moment correlations were computed separately for
each site and used in the analysis if they were greater than 0.1. The correlations used are shown
in Tables 2.2.1 and 2.2.2.

Deposition (Ndep and Sdep)
Nitrogen deposition is required to decide which formulation of CLmaxN to use, and both
depositions are required to compute exceedance. Deposition is taken from the national database
for the years 1998-2000. Pending the outcome of discussions about the most appropriate
distribution to use, lognormal distributions with 50 per cent  coefficients of variation were
employed. As with the observed concentrations, the distribution was truncated at the upper end
at two standard deviations (the lower limit is of course zero). Deposition is often lognormally
distributed over time, but whether this should extend to uncertainty distributions is a moot point.



Uncertainty in Critical Load Assessment Models36

2.2.2.2 Results of the uncertainty analysis

The means and coefficients of variation for various critical loads are shown for all the AWMN
sites in Tables 2.2.3 and 2.2.4. These comprise the maximum critical load for sulphur, CLmaxS,
the maximum critical load for nitrogen, CLmaxN, and the minimum critical load for nitrogen,
CLminN. The critical ANC leaching Lcrit is also shown. These parameters are defined in Appendix
A1.2. Means and standard deviations of exceedance are also shown, except for sites in Northern
Ireland where deposition values were not available.

A sensitivity analysis, showing the percentage contribution of each input parameter to variance in
the estimates of each output parameter, is given in Tables 2.2.5 to 2.2.12.

Finally, the 10th, 50th and 90th percentiles for exceedance are shown for each site in Tables
2.2.13 and 2.2.14. The tables also show the percent confidence that the critical load for acid
deposition at the site is not exceeded. For two sites, Scoat and Burnmoor Tarns, cumulative
distribution functions for exceedance were also plotted (Figure 2.2.2).
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Figure 2.2.2: Cumulative Distribution Functions for Exceedance, Scoat and Burnmoor
Tarns

Figure 2.2.2 shows cumulative distribution functions for exceedance for Scoat and Burnmoor
Tarns only. Scoat Tarn can be said to be exceeded with a high degree of confidence (98 per
cent) whereas the corresponding value for Burnmoor is only around 51 per cent  (inverse of
Table 2.2.13). The function shows that the tails of the distributions for both tarns are quite
extensive, where exceedance changes rapidly with percentile below the 10th percentile and
above the 90th percentile. This could have implications for the use of exceedances in probabilistic
risk assessments.

2.2.3 Effect of uncertainty in the critical limit

2.2.3.1 Methods

The analysis above did not include any uncertainty in the value of the critical limit, which was set
to an ANC of 20 µeq L-1. The critical limit is, however, also subject to uncertainty; for instance,
the UK has recently changed the value used from an ANC of 0 µeq L-1 to 20 µeq L-1. Morgan and
Henrion (1990), in a standard textbook on decision analysis, suggest that “decision variables”
such as ANClim are best treated parametrically rather than probabilistically. In other words,
although there is clearly uncertainty about the appropriate value for ANClim, the most profitable
approach is to explore the effect of different choices of value on the outcome, rather than treat
ANClim as an empirically variable quantity which contributes uncertainty on the same basis as
other such quantities. It was thus decided to re-run some sites with a limiting ANC of 0 µeq L-1 for
comparative purposes.

The results below use two sites from the Lake District as examples. Scoat Tarn is a very
sensitive site; Burnmoor Tarn is less so. The FAB model was run in a Monte Carlo framework for
these sites to provide a prediction for future steady state ANC and exceedance. Three scenarios
were used for each lake:
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• parameters as used in Section 2.2.2, but with the ANC limit set to 0 µeq L-1 rather than 20
µeq L-1;

• as above, but with deposition at the critical load (ANC 0 µeq L-1);
• as above, but with deposition at the critical load (ANC 20 µeq L-1).

Nitrogen and sulphur deposition were altered to meet the critical loads in the same proportion as
in current deposition. The values used are shown in Table 2.2.15.

Table 2.2.15: S and N deposition scenarios used
Burnmoor Tarn Scoat Tarn

1Dep Present CL 0 CL 20 Present CL 0 CL 20
N dep 1.2829 1.4641 1.2028 1.6093 0.6771 0.3473
*S dep 0.8208 0.9367 0.7696 0.9996 0.4332 0.2157

1Deposition in keq ha-1yr-1. Present = present (1998-2000) deposition; CL 0 = deposition at the
critical load (ANC 0 µeq L-1); CL 20 =  deposition at the critical load (ANC 20 µeq L-1).

2.2.3.2 Results

The effect of changing the critical limit on the mean and coefficient of variation of the critical load
parameters for Burnmoor and Scoat Tarns is shown in Table 2.2.16. Increasing the critical limit
reduces the critical loads substantially (except for CLminN, which is not affected by the critical
limit). With 1998-2000 deposition, Burnmoor Tarn moves into exceedance from non-exceedance.
Another effect is to increase the coefficient of variation. Since everything in the runs except the
ANC limit is the same, the spread of Monte Carlo outputs is the same and hence a lower mean
implies a higher CV.

A sensitivity analysis for the revised critical limits revealed the same pattern as for ANC 20
(Table 2.2.3) and hence is not shown. For exceedance, the sensitivity analysis is shown in Table
2.2.17 below.

Table 2.2.16: Effect of changing the critical limit
Site Burnmoor Scoat
1Critical
limit

CL 0 CL 20 CL 0 CL 20

Lcrit

keq ha-1yr-

1
2.052

1.652
0.910

0.404
CV % 15 18 25 56

CLmaxS
keq ha-1yr-

1
2.072

1.668
0.918

0.407
CV % 15 18 25 56

CLminN
keq ha-1yr-

1 0.176 0.176 0.136 0.136
CV % 21 21 20 20

CLmaxN
keq ha-1yr-

1
2.422

1.984
1.131

0.578
CV % 14 17 22 43

Exceedance keq ha-1yr- -0.367 0.061 1.273 1.780
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1

SD
keq ha-1yr-

1
0.619

0.631 0.719 0.711

1CL 0 means a critical limit of 0 µeq L-1 was used; CL 20 means 20 µeq L-1.  Exceedance was
calculated using 1998-2001 deposition.

2.2.4 Uncertainty in future fish status

2.2.4.1 Introduction

The choice of ANC as an appropriate critical chemical limit is largely based on work in Norwegian
lakes which shows a correlation between ANC and fish population status. The most
comprehensive study of this kind is by Lien et al. (1996), which gives cumulative distribution
graphs showing the relationship between ANC and three fish status variables (healthy, reduced
and extinct) in a large population of Norwegian lakes. These are shown for a variety of fish
species. These relationships make it possible to go beyond critical loads and investigate the
probabilities of fish population recovery given different deposition scenarios. The relationships
between fish populations and ANC in Lien et al. (1996) can be interpreted as probabilities that a
lake will be in one or other of three population modes (healthy, reduced and extinct) at a given
ANC. Since the FAB model calculates the future value of ANC for a given value of S and N
deposition, the probability that lakes will be in one or more of these states can be calculated.
Though this is an extension of the critical loads approach as such, it does provide an unusual
opportunity to set uncertainty bounds on real environmental consequences rather than chemical
abstractions. Probability distributions for fish health variables were calculated as described in
Appendix A1.5.3. These were then applied to the distribution of ANC predictions as calculated by
FAB.

2.2.4.2 Results: ANC predictions

FAB calculates the distribution of future ANC, and can also be used to generate an estimate of
what ANC was in pre-industrial times (ANC0). These are shown for Scoat and Burnmoor Tarns in
Figures 2.2.3 to 2.2.6 below.
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 Figure 2.2.3: Modelled probability distribution for ANC0 in Burnmoor Tarn in pre-industrial
times

Figure 2.2.4: Modelled future probability distribution for ANC in Burnmoor Tarn if
deposition was held at the critical load

For Burnmoor Tarn, the pre-industrial ANC was (according to the model) definitely positive, with
a mean value of 74 µeq L-1 and a range of 40 to 108 µeq L-1 (Figure 2.2.3). If deposition were to
be held at the critical load, then the model predicts a mean ANC of 23 µeq L-1 (the deterministic
value is of course 20 µeq L-1), and a much larger range of –113 to +109 µeq L-1 (the most
extreme values are not shown on the diagram). Meeting the critical load does not imply a return
to pristine conditions, and scientific uncertainty is such that the ultimate outcome could still
encompass environmentally disastrous water qualities.
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Figure 2.2.5: Modelled probability distribution for ANC0 in Scoat Tarn in pre-industrial
times

Figure 2.2.6: Modelled future probability distribution for ANC in Scoat Tarn if deposition
was held at the critical load

For Scoat Tarn, the pre-industrial ANC is much lower than Burnmoor, with a mean of 17 µeq L-1

and a range of –5 to +38 µeq L-1. The mean pre-industrial ANC is lower than the ANC criterion of
20 µeq L-1, suggesting perhaps that this is too stringent. Deposition at this critical load leads to a
higher mean (20.6 µeq L-1) and a slightly wider range than the pre-industrial ANC. Nevertheless,
about 18 per cent of predicted critical load values are below zero.
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2.2.4.3 Results: uncertainty in fish responses

These ANC distributions can be used in conjunction with the fish response functions in Appendix
A1.5.3 to estimate the probability that each lake would, in the long term, contain reduced or
extinct fish populations. These can be plotted as cumulative distribution functions which have two
probabilistic axes: the probability of population reduction or extinction on the y-axis, and the
cumulative probability that this will occur on the x-axis. As well as predictions of fish status given
the current (1998-2000) deposition, it is of interest to see how these functions change if
deposition is reduced to the critical load. In Figures 2.2.7 to 2.2.10 below, the probability of fish
damage with current deposition and with deposition at critical loads based on both 0 µeq L-1 ANC
and 20 µeq L-1 ANC is plotted. Deposition scenarios were as in Table 2.2.15 above.

Figure 2.2.7: Probability of a reduction in brown trout populations in Scoat Tarn and
Burnmoor Tarn with various deposition reduction scenarios

Figures 2.2.7 to 2.2.10 can be seen as summarising the effects of parameter uncertainty on
predictions of brown trout and ‘all fish’ population status in the future. Figure 2.2.7 shows that
although the same critical load criteria have been applied to both lakes, the responses are quite
different. With present deposition, there is a high probability of a reduced brown trout population
in Scoat Tarn (more than 50% of Monte Carlo runs show a 100% probability of population
reduction). For Burnmoor Tarn, less than 1% of Monte Carlo runs indicate a 100% probability of
a population reduction, and 50% of the simulations have a probability of 9% population reduction
or less. If a precautionary criterion were adopted, that we should be at least 90% certain that the
probability of brown trout population reduction was 50% or less, then neither lake meets the
criterion with present deposition. The situation changes if deposition is changed to meet the old
UK critical load criterion of 0 µeq L-1 ANC. Note that as this critical load was not exceeded at
Burnmoor using the default parameters, this involves an increase of deposition at Burnmoor and
a reduction at Scoat.
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The responses of the lakes coincide where there is a 50% probability of brown trout population
reduction, as predicted from the dose-response functions in Appendix A. Otherwise, Burnmoor is
much more sensitive to the possible range of input parameters than Scoat. For instance, for
Burnmoor about 22% of Monte Carlo runs have a population reduction probability of greater than
90%, whereas for Scoat only 5% of runs do so. At the other end of the distribution function, about
38% of Monte Carlo runs at Burnmoor have a population reduction probability of 10% or less, the
corresponding figure for Scoat being 11%. Almost certainly, this is because of the larger
deposition needed to exceed the critical load at Burnmoor, and hence the greater influence of
deposition uncertainty.

Figure 2.2.8: Probability of extinction of brown trout populations in Scoat Tarn and
Burnmoor Tarn with various deposition reduction scenarios

This is borne out by the sensitivity analyses which show that deposition contributes 78% of the
variation in exceedance at Burnmoo,r but 55% at Scoat with this scenario (see Table 2.2.17
below). The pattern is similar for the more stringent criterion of ANC 20 µeq L-1. The responses of
the lakes now coincide at about 12% probability of brown trout population reduction, but
otherwise Burnmoor is again more sensitive than Scoat to the range of input parameters. The
precautionary criterion that we should be at least 90% certain that the probability of brown trout
population reduction is 50% or less is now met at Scoat (where we can be 95% certain) but not
at Burnmoor (80% certain) with both sites at the critical load. This is in spite of (or possibly
because of) the fact that Burnmoor is the less sensitive site using default parameters, and
illustrates that the use of probabilistic criteria may change the relative sensitivity of sites.

For brown trout extinction (Figure 2.2.8), the probabilities are generally a little lower, but the
patterns are similar to population reduction. With present deposition, 50% of Monte Carlo runs
showed an extinction probability of 100% at Scoat, but no runs gave such a high probability at
Burnmoor. Reducing or increasing deposition to meet ANC 0 µeq L-1, both sites show the same
extinction probability at about 9%, but as with population reduction, Burnmoor is more sensitive
to the range of possible values. At ANC 20 µeq L-1, the default parameters should generate no
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extinction (Figure 2.2.2), but there is a finite probability of population extinction which is greater at
Burnmoor (Figure 2.2.8). At Scoat we can be 100% certain that the probability of extinction is
50% or less, and about 92% certain at Burnmoor.

Figure 2.2.9: Probability of a reduction in fish populations in Scoat Tarn and Burnmoor
Tarn with various deposition reduction scenarios

Figure 2.2.10: Probability of extinction of fish populations in Scoat Tarn and Burnmoor
Tarn with various deposition reduction scenarios
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For fish populations in general, the pattern of observations is very similar to that of brown trout
(Figures 2.2.9 and 2.2.10). Fish population reduction is slightly more likely than brown trout
population reduction, and fish extinction is slightly less likely than brown trout extinction. This
simply reflects the functions in Lien et al. (1996) encapsulated in Appendix Figures A2 to A4. The
comments about relative sensitivity apply to brown trout and ‘all fish’ equally.

2.2.4.4 Sensitivity analysis

Sensitivity analyses for exceedance and predicted steady state ANC at Scoat and Burnmoor
Tarns are shown in Table 2.2.17 below. The analysis was performed for Scoat Tarn and
Burnmoor Tarn with three levels of deposition as described above (Table 2.2.15).

The pattern of uncertainty is very similar to that of the critical load parameters (see Tables 2.2.5
to 2.2.12). N deposition has the major influence on exceedance, followed by non-marine S
deposition, reflecting their different magnitudes (Table 2.2.17). As deposition reduces, deposition
uncertainty becomes less important and catchment parameters, particularly present non-marine
base cation concentration (BC*t), become more dominant. Other parameters play minor roles
and some none at all. The sensitivity pattern for exceedance and predicted ANC is essentially
identical. As the trout population functions are calculated from ANC it might be expected that
they would also be very similar, and this proved to be the case (data not shown), though
extinction for some reason was more sensitive to N deposition and less sensitive to base cation
concentration than population reduction. The sensitivity analysis for all fish was essentially
identical to that for trout (data not shown).
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2.2.5 Conclusions (freshwater ecosystems)

Tables 3.1 to 3.13 contain a wealth of interesting information. Some of the main
points are:

• In spite of the complexity of the FAB model, coefficients of variation for the
various critical load values are remarkably low.

• CVs for streams are generally lower than for lakes, which appears to be
related to the lower variability of present non-marine base cation
concentrations (CV 26% lakes, 20% streams). This in turn may be due to the
higher sampling frequency for streams (12 times a year as opposed to four for
lakes), as streams would be expected to be more variable than lakes.

• The CVs for all critical load parameters are lower than those in the trial sites
for the SSMB model for soils.

• Only Loch Grannoch has a high CV for CLmaxS and CLmaxN. The values of
CLmaxS and CLmaxN are very low in absolute terms. The pre-industrial ANC
was only 7.5 µeq L-1 according to the default parameters, which suggests that
ANC = 20 µeq L-1 is not an appropriate critical load criterion for this site.

• It is noticeable that though all the relevant input parameters have spreads of ±
50%, the CVs for CLminN are only around 20%.

• The uncertainty analysis shows the remarkable result that for all sites except
Old Lodge, uncertainty in the present non-marine base cation concentration is
the major source of uncertainty in Lcrit, CLmaxS and CLmaxN , and for all except
Old Lodge and the River Etherow, it is overwhelmingly the dominant source.

• The next most important sources are present non-marine sulphate and
present nitrate concentrations. However, they appear to be important only to
the extent that they are correlated with non-marine base cation
concentrations, and become unimportant when these correlations are low or
absent.

• Otherwise, the only parameters to have any consistent influence on CLmaxS
are run-off and the parameters a and b in the equation linking pre-industrial
sulphate with present non-marine base cation concentrations. The parameter
b is particularly important at the River Etherow.

• Old Lodge is exceptional in being the only lowland site, otherwise it is difficult
to see why it is so different.

• For CLmaxN, the nitrogen immobilisation and denitrification parameters also
have a small influence, and for lakes, the in-lake N reduction parameter SN.

• CLminN is influenced only by the three N sink parameters, and of these,
immobilisation is dominant except at Loch Tinker where it is denitrification.
Uptake is never the dominant parameter. This result reflects the different
magnitudes of the three sinks.

• The dominant influence on uncertainty of exceedance, however, is
uncertainty in nitrogen deposition, except at three sites where deposition is
very low. Sulphur deposition is normally second, followed by those factors
which influence CLmaxN. The predominance of nitrogen deposition reflects the
fact that it is greater than S deposition at all these sites.

• If 90% confidence of non-exceedance is required, all 18 GB sites were
exceeded with 1998-2000 deposition. For 50% confidence, there were 15
sites, and for 10% confidence, 12 sites. The choice of exceedance probability
is fairly arbitrary, but will have a very large effect on perceptions of damage.

• Exceedance distributions looked close to normal, but the spreads of the
distributions varied considerably.
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• Overall, it appears from these sites that there is little scope for reducing the
uncertainty attached to predictions of the current FAB model, because
uncertainty is driven largely by natural variation in measured base cation
concentrations. This analysis tells us nothing about whether the structure of
the current model is correct.

• Uncertainty in exceedance can be reduced by decreasing the uncertainty in
deposition.

• 

2.3 Meta-analysis
Since we now have considerable experience in estimating uncertainty in critical loads
at individual sites, some conclusions can be drawn by considering all the data
together in a simple meta-analysis. The data meet the requirements for meta-
analysis, as they can be expressed in a common metric representing the size of the
effect we are interested in. Using the coefficient of variation for this purpose allows us
to compare critical loads. Results have not been weighted in any way, as they have
been generated using the same methods and are considered equally reliable.
Coefficients of variation of all terrestrial critical loads calculated are shown in Figure
2.3.1. Statistics for the coniferous forest sites are shown in Table 2.3.1.

Figure 2.3.1: Coefficients of variation of terrestrial critical loads calculated
during this study. All sites except Climoor are coniferous forest.

Figure 2.3.1 and Table 2.3.1 show that most uncertainty attaches to CL(A), followed
by CLmaxS , CLmaxN and CLminN. Coefficients of variation are generally surprisingly
low, but there is some variation, with one value of 78 per cent for CLmaxS. A restricted
sample of three points for CLnutN also indicates relatively low uncertainty, but more
data are clearly required.
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Table 2.3.1: Statistics for the coefficient of variation (%) of terrestrial critical loads
CL(A) CLmaxS CLmaxN CLminN CLnutN

Mean (%) 43.4 37.7 19.2 11.7 16.0
SD 11.4 16.7  8.4  5.4  5.1
Statistics are for the coniferous forest sites only.

The standard deviations in Table 2.3.1 indicate ‘uncertainty about uncertainty’; that
is, the variability in the mean uncertainty of this small sample of sites. The CVs are
about 45 per cent  for CLmaxS , CLmaxN  and CLminN and somewhat less for the
others.

Similarly, Figure 2.3.2 and Table 2.3.2 show a meta-analysis for all the aquatic
critical loads. For CLmaxS there is an outlier for Loch Grannoch, which has the lowest
and most variable value in the data set for the key parameter ‘non-marine base
cation concentration’. This gives a very large CV of 145 per cent, and also the
highest CV for CLmaxN. Even with Loch Grannoch removed (Table 2.3.2), critical load
values for lakes appear to be more uncertain than those for streams, possibly
because they are sampled four times a year instead of 12. Compared to terrestrial
critical loads, CLmaxS values for waters are generally lower, CLmaxN values about the
same, and CLminN values higher. There is little variation in uncertainty for aquatic
CLminN values, probably because the assumed distributions and variability are the
same at each site, and the soil types (which determine two of the three parameters
contributing to CLminN) are very similar for these sites.

Figure 2.3.2: Coefficients of variation of aquatic critical loads calculated during
this study

The data for aquatic systems show a pattern similar to that of terrestrial systems, in
that CLmaxS is more uncertain than CLmaxN, which is more uncertain than CLminN. As
discussed above, this is probably due to compensation of errors between CLmaxS and
CLmaxN.
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Table 2.3.2: Statistics for the coefficient of variation (%) of aquatic critical loads
CLmaxS CLmaxN CLminN
Mean SD Mean SD Mean SD

Streams 27.0  8.2 19.5  3.7 21.3  1.6
Lakes 42.6

(32.3)
35.8
(11.9)

28.6
(25.2)

13.9 (8.3) 20.5  1.9

Values in parentheses are without the Loch Grannoch outlier.

More meta-analysis can be performed on exceedance. Here it is not possible to use
a coefficient of variation, since exceedance can be negative as well as positive, and it
seems most appropriate to calculate cumulative distribution functions (CDFs) for
each implementation of the Monte Carlo analysis. The CDFs for terrestrial
exceedances of all types of critical load at Liphook, Aber and Climoor are shown in
Figure 2.3.3.

The exceedance graph for Thetford requires a different scale and is shown as Figure
2.3.4.

Figure 2.3.3: CDFs of critical load exceedance at terrestrial sites
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Figure 2.3.4: Exceedance at Thetford, using national or site-specific parameters

Figures 2.3.3 and 2.3.4 show several interesting features. At no site can we be 100%
confident of exceedance or non-exceedance. Even at Thetford, a calcareous site with
a high critical load, there is an exceedance probability of about 2%. The range from
0-100% probability is about 1.5 keq ha-1yr-1 at Liphook, but over 3 keq ha-1yr-1 at Aber
and Climoor, and about 20 keq ha-1yr-1 at Thetford. These are significant ranges
relative to the typical amounts of acid deposition. The implication of these ranges for
regulation is that requiring a high probability of non-exceedance is likely to carry high
costs. Figures 2.3.3 and 2.3.4 appear to show that the probabilistic range of
exceedance estimates is site-dependent, and is likely to depend on which
parameters are important and how well they can be estimated.

The cumulative distribution functions (CDFs) for the aquatic sites are shown in Figure
2.3.5.

Figure 2.3.5: CDFs of aquatic critical load exceedance
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there is a small probability of exceedance. Streams and lakes occupy the same
envelope, and there appears to be a slight tendency for sites with higher exceedance
to have a wider spread.

2.4 Conclusions
The detailed conclusions for site-specific critical load uncertainty are given at the end
of the terrestrial and freshwater sections. Some general points can however be
made:

1. The variability of the output parameters is nearly always smaller than the
variability of the input parameters, often considerably. This means the spread
of the critical loads is lower than might otherwise be expected, and they
become manageable tools in spite of uncertain knowledge of input
parameters.

2. The distributions, however, cover a wide range. They often look close to
normal, though this should be checked further. Attempts to operate in the tails
of these distributions, for example by specifying a high probability of non-
exceedance of critical loads as an environmental target, are likely to carry
high costs.

3. Sites differ in the parameters which have most influence on the uncertainty of
the critical load outputs. For the FAB model, present-day base cation
concentrations have the most influence at 21 out of 22 sites. For terrestrial
sites, the range of dominant parameters is wider.

4. It may be possible to produce a typology of sites which would predict which
parameters were most important to uncertainty.

5. Sites differ in whether deposition or catchment parameters are more
important in determining the uncertainty in exceedance. As deposition
decreases, however, the relative importance of catchment parameters will
clearly increase.

6. From a very limited number of runs, the acidity critical loads for heathland and
nutrient nitrogen critical loads for managed woodlands appear to have lower
spreads than acidity critical loads for coniferous forests. This need checking
on a national scale with default parameters.

7. The availability of on-site measurements can reduce the uncertainties in
calculated critical loads significantly.

8. There is clearly an interaction between parameter uncertainty and other types
of uncertainty. In FAB, the current base cation concentration parameter
includes estimates of base cation weathering and deposition, which are
treated separately in the SSMB, with the aid of certain assumptions. Thus,
parameter uncertainty in FAB has probably been reduced by increasing the
uncertainty in model structure.
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3 National scale uncertainty
Summary

• This section describes the uncertainty studies based on national data sets for
the case of: (a) critical loads and exceedances for managed coniferous
woodland;        (b) acidity critical loads for soils; (c) mapping broad habitats.

• Around 35% of managed coniferous woodland have a greater than 95%
probability of exceedance for both acidity and nutrient nitrogen.

• ‘Compensation of errors’ results in the coefficient of variation for critical loads
(acidity and nitrogen) for the managed coniferous woodland habitat being
smaller than many of the input uncertainty ranges.

• Where woodland acidity critical loads are small, calcium deposition has a
greater influence on the critical load values than calcium weathering.

• The variance due to soil type differs by region of the country; for example,
soils in Snowdonia are less variable than soils in the Brecklands.

• In nearly half (42.5%) of 1x1 km squares in England and Wales, the critical
load is the same whether the dominant or sub-dominant soil is used.

• Applying the national critical loads data to designated sites can give rise to
anomalous values, particularly for larger sites with variable soils and habitats.

• The uncertainties in mapping broad habitats can be identified but not
quantified.

• The habitat critical load maps provide a national picture of their distribution
and sensitivity to acidification and eutrophication, appropriate for
assessments at the national scale. They may be inappropriate for site-specific
assessments.

3.1 Uncertainties in critical loads for managed
coniferous woodland

This section describes the national scale uncertainty analysis in critical loads and
their exceedances for both acidity and nutrient nitrogen, and using managed
coniferous woodland on mineral soils as an example habitat type.

3.1.1 Input data and methods

The critical load calculations are based on the mass balance equations for acidity
and nitrogen (Appendix A). The 2004 critical loads data were used for which,
according to the national habitat maps developed for UK critical loads research,
managed coniferous woodland on mineral soils is found in approximately 31,500 1x1
km grid squares across the UK.  The deposition data, used in the critical load and
exceedance calculations, are mapped on a 5x5 km grid; mean values for woodland
for 1999-2001 have been used.

Maximum ranges of potential values relevant to the acidity critical load equations and
subjective probability distributions are presented in Table 3.1.1. Plausible ranges of
input parameters and their uncertainties were identified based on a literature survey,
collected data, and interviews with experts.
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In order to calculate the uncertainty in critical load exceedances, an estimate of the
uncertainty in acidifying deposition parameters is also required. This is a continuing
task. A complete assessment of uncertainty in measured deposition at the national
scale has not yet been carried out. However, a subjective assessment by UK
deposition experts suggests that a 95% confidence band around the deposition
estimate for a given five km square of ±  30% is probably over-optimistic, ±  50% is
optimistic and ±  100% is quite likely, all assuming a normal distribution (Smith, pers.
comm.). The uncertainty analysis presented in this section applies the optimistic
estimate (CV = 25%) of uncertainty to the national five km sulphur and nitrogen
deposition data.
No spatial auto-correlations were taken into account between the parameters of
neighbouring grid squares. This is probably a fair assumption except for the
deposition parameters, where Smith et al. (1995) report that there is spatial auto-
correlation in the national deposition data sets, with larger uncertainties expected in
upland regions, but this has not been quantified for the current models and so spatial
auto-correlation is not included in the analysis here.

Monte Carlo methods were once again used to propagate the uncertainty in the
model parameters. The Monte Carlo simulations gave 5,000 critical load values
(CLmaxS, CLminN, CLmaxN, CLnutN) and critical load exceedance values for every grid
square.

Table 3.1.1: Summary of the uncertainty estimates and ranges identified in the
inputs to UK critical load exceedance calculations.

Parameter* Type of
distribution

Uncertainty range

S dep Normal 25%b

N dep Normal 25%b

BC dep Normal 25%b

Ca dep Normal 25%b

BCw Rectangular ± 33-100%a, depending on soil type
Cacorr Rectangular ± 10-100%a, depending on soil type
BCu Normal 23%b

Cau Normal 27%b

Q Normal 23%b

Ca:Al Rectangular ± 50%a

Kgibb Rectangular ± 20%a

Nimmob Rectangular ± 50%a

Nuptake Normal 27%b

Ndenit Rectangular ± 20-50%a, depending on soil type
Nle(acc) Triangular -80% to +25%c

* Refer to List of Abbreviations
aMinimum value = mean value - x% * mean value
 Maximum value = mean value + x % * mean value
bCoefficient of variation x% = (mean value / standard deviation) * 100
cMost likely values of the distribution have been assumed to be the default values
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3.1.2 Critical load uncertainty

The mean critical load value for all coniferous woodland grid squares was determined
from the Monte Carlo runs. Table 3.1.2 shows the mean CLmaxS, CLminN, CLmaxN,
CLnutN values together with their standard deviations and coefficients of variation.

Table 3.1.2: Means, standard deviations and coefficients of variation of the
predicted coniferous woodland critical load function for all one km grid
squares in the UK

Critical
load

Mean
(keq ha-1 yr-1)

Standard deviation
(keq ha-1 yr-1)

Coefficient of variation (%)

CLmaxS 2.15 0.67 31
CLminN 0.45 0.07 16
CLmaxN 2.60 0.66 25
CLnutN 0.68 0.09 13

The coefficients of variation on the critical load function parameters are quite small.
The CV for CLmaxN is smaller than CLmaxS which is the opposite of what might be
intuitively assumed, since CLmaxN incorporates more sources of uncertainty. The CV
for CLnutN is strikingly small. The reason for these results appear to be a
compensation of errors mechanism, a phenomenon also noted by Suutari et al.
(2001) and Skeffington et al. (2006). This is where a negative effect on one
parameter is compensated for by a positive effect on another, which depends on the
correlations assumed in the data.

The results of the analysis using 2004 critical loads are different for CLmaxS and
CLmaxN from those of a similar study carried out for the 2001 data by Hall et al.
(2004c), who reported a CV of 29% for CLmaxS and 21% for CLmaxN. There are a
number of possible reasons why these CVs, although comparable, are smaller (for
CLmaxS and CLmaxN) than those calculated for the current data set:

1. Heywood et al. (2006a) carried out the analysis for all coniferous woodland
(on mineral, organic and peat soils), whereas the current analysis is for
coniferous woodland on mineral soil only.

2. The underlying (deterministic) input data has changed. For example, the
mean of the 2001 critical loads data set for CLmaxS was 1.83 keq ha-1 yr-1 and
for 2004 it was 1.97 keq ha-1 yr-1.

3. Different uncertainty ranges were used for the deposition parameters.
4. Different sequences of random numbers were used.
5. The habitat was mapped differently so that in 2001 there was 7,379 km2 of

coniferous woodland estimated in the UK, and in 2004 this estimate rose to
7,970 km2 (for acidity).

The results for CLminN and CLnutN are almost identical to the earlier study (Hall et al.,
2004c).
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3.1.3 Exceedance uncertainty

Figures 3.1.1(a), (b) and (c) show the frequency, cumulative and inverse cumulative
distribution charts of exceedance values for a single one km grid square at Liphook.
These charts represent different ways of presenting the same information and are
discussed further in Section 6.

Figure 3.1.1(a): Frequency chart for one km grid square at Liphook. The x-axis
shows critical load exceedance in eq.ha-1yr-1 and the y-axis
probability/frequency. The broken line shows zero exceedance.

Figure 3.1.1(b): Cumulative frequency chart for one km grid square at Liphook.
The x-axis shows critical load exceedance in eq ha-1yr-1 and the y-axis
probability/frequency. The broken line shows zero exceedance.
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Figure 3.1.1(c): Inverse cumulative frequency chart for one km grid square at
Liphook. The x-axis shows critical load exceedance in eq ha-1yr-1 and the y-axis
probability/frequency. The broken line shows zero exceedance.

The dashed lines on each chart represent zero exceedance. Figure 3.1.1 shows
distributions which lie almost entirely on the right hand side of the dashed line,
showing that Liphook has a very high probability of being exceeded.

The mean and standard deviation of the exceedance distribution for every 1x1 km2 of
coniferous woodland (on mineral soils) were generated from 5,000 Monte Carlo runs
varying the critical load and deposition parameters simultaneously. The probability of
exceedance, where the percentage of the cumulative frequency chart lies above
zero, was calculated for every one km grid square. The results were then assigned to
one of the following five classes:

• 0-5% probability: unlikely to be exceeded;
• 5-25% probability: relatively low risk of exceedance;
• 25-75% probability: potential risk of exceedance;
• 75-95% probability: relatively high risk of exceedance;
• > 95% probability: highly likely to be exceeded.

The results are shown in Figure 3.1.2(a) for acidity and Figure 3.1.2(b) for nutrient
nitrogen. Those areas that have less than 5% probability of exceedance are those
with a high degree of confidence that the critical loads are not exceeded; conversely,
areas with more than a 95% probability of exceedance are the most certain to be
exceeded. Figure 3.1.2 shows for acidity exceedance that 33% of coniferous
woodland (on mineral soils) has a greater than 95% probability of exceedance and
10% has less than 5% probability of exceedance.  For nutrient nitrogen, most (98%)
of the country has a very high (>95%) probability of exceedance, implying that
reduction in the emissions of nitrogen oxides and ammonia are necessary.
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Figure 3.1.2(a): Probability of acidity exceedance for coniferous woodland on
mineral soils using 1999-2001 measured deposition
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Figure 3.1.2(b): Probability of nutrient nitrogen exceedance for coniferous
woodland on mineral soils using 1999-2001 measured deposition

Figures 3.1.3(a) and (b) show the cumulative frequency charts of the percentage total
area of coniferous woodland exceeded for acidity or nutrient nitrogen. Cumulative
frequency charts of habitat exceedance are generated by ranking the probability of
exceedance for each grid cell from lowest to highest and calculating the cumulative
sum of the areas. Figure 3.1.3(a) shows the probability of acidity exceedance on the
y-axis and the cumulative sum of the area, normalised to the total habitat area on the
x-axis. A precautionary approach would dictate that to be 95% certain of protecting
all the areas at risk of acidification (that is, to protect all those areas with a greater
than 5% probability of exceedance), 90% of the coniferous woodland (on mineral
soils) would have to be protected. Adopting a 50% probability of exceedance, we
would aim to protect 75% of coniferous woodland (all those areas with a greater than
50% probability of exceedance). The deterministic percentage area of coniferous
woodland (the area we normally aim to protect) is 70%.

Figure 3.1.3(b) shows the cumulative frequency chart of habitat exceedance
probability for nutrient nitrogen. The slope of the chart is initially very steep, indicating
that most areas have a very high probability of exceedance. The deterministic
percentage area exceeded is 93%. Taking a precautionary approach (protecting all
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areas with a greater than 5% probability of exceedance), we should aim to protect
approximately 100% of coniferous woodland. Protecting all those areas with a greater
than 50% probability of exceedance suggests we should be protecting about 98% of
coniferous woodland. For nutrient nitrogen, there is a narrow range of areas of
coniferous woodland we would wish to protect.

Figure 3.1.3: Cumulative frequency charts of the percentage total area of
coniferous woodland exceeded for acidity (a) and nutrient nitrogen (b)
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3.2 Relative importance of calcium weathering
and deposition in low critical load areas

The site-specific uncertainty analysis showed that the SSMB equation for acidity
critical loads for managed woodlands was very sensitive to the total calcium
deposition parameter.  At the site in question (Liphook), the weathering rates (base
cation and calcium) were very low.  A simple sensitivity analysis was carried out on
national data sets to determine which parameter, calcium weathering or calcium
deposition, had the greatest influence on the calculated critical load, particularly in
areas where the weathering rates are small.

Plotting total calcium deposition against the acidity critical load for all managed
conifer areas in the UK (Figure 3.2.1) shows that the critical load increases with an
increase in calcium deposition, decreasing slightly once the critical load is above 2.0
keq ha-1yr-1.

Figure 3.2.1: Total calcium deposition vs acidity critical load for managed
conifers

Extracting the data for all one km managed conifer squares where the acidity critical
load is ≤ 0.2 keq ha-1yr-1 yields 105 x 1 km2 squares.  The dominant soil in each of
these squares is a mineral soil, so the same formulation of the SSMB equation would
be applied. Other characteristics of these squares are given in Table 3.2.1 below.
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Table 3.2.1: Characteristics of the 105 managed coniferous woodland 1x1 km
squares with acidity critical loads ≤ 0.2 keq ha-1yr-1

Parameter Minimum Maximum# Mean
Total Ca deposition (keq ha-1yr-1) 0.15 0.17  (0.97) 0.158
Ca weathering (keq ha-1yr-1) 0.01 0.02  (4.0) 0.01
Base cation weathering (keq ha-1yr-1) 0.1 0.1    (4.0) 0.1
Run-off (m) 0.116 0.882 (3.4) 0.391
# Value in brackets denotes maximum value nationally

Table 3.2.1 shows that for the 105 1x1 km squares being considered, the Ca
deposition values are at least an order of magnitude greater than the Ca weathering
rates.  A simple sensitivity analysis was performed, calculating the acidity critical
loads by varying the Ca deposition values in the range 0.1 to 1.0 keq ha-1yr-1 and
varying the Ca weathering values from 0.01 to 0.1 keq ha-1yr-1 (Figure 3.2.2).

Figure 3.2.2: The effect of Ca deposition and Ca weathering rates on the
calculation of acidity critical loads for managed coniferous woodland

Figure 3.2.2 shows that:

• Doubling Ca deposition from 0.1 to 0.2 keq ha-1yr-1 is sufficient to move the
critical load from the lowest category (critical load map class ≤ 0.2 keq ha-1yr-

1) into the next highest category (0.2-0.5 keq ha-1yr-1).  So, if we assume 50%
uncertainty around the mean Ca deposition value of 0.158 keq ha-1yr-1, an
increase in that value by 50% would result in a critical load in the class 0.2-
0.5 keq ha-1yr-1.

• Because Ca weathering values are so small, a tenfold increase (from 0.01 to
0.1) is needed to shift the critical load into the next class (from map class ≤
0.2 keq ha-1yr-1 to class 0.2-0.5 keq ha-1yr-1).

• Where the critical load is small (less than 0.2 keq ha-1yr-1), Ca deposition is
more important than Ca weathering.
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3.3 Variance in acidity critical loads by soil type
3.3.1 Acidity critical loads for non-peat soils in England and

Wales

The national acidity critical loads maps for broad habitats are based on the acidity
critical loads for soils; for non-woodland habitats, the critical loads are set to the
values for soils based on the empirical methods for non-peat and peat soils (Hall et
al., 2003a, 2004a).  For woodland habitats, the empirical soil critical loads data
provide the base cation weathering inputs to the SSMB equation. In all cases, critical
loads are based on the dominant soil within each 1x1 km grid square.

The national soils database for England and Wales includes information on the
percentage of all soil associations within each 1x1 km grid square, and critical load
classes were originally assigned to each soil association (Loveland, 1991), with the
exception of peat soils for which a different method is used (Hall et al., 2003a,
2004a). Using these data, four acidity critical load maps have been generated at 1x1
km resolution for the non-peat soils in England and Wales, based on:

• the dominant soil
• the most sensitive soil
• the least sensitive soil
• an area-weighted mean of all soil types.

Maps are shown in Figures 3.3.1(a) to 3.3.1(d).  All four maps show low critical loads
in parts of Wales, Welsh borders, North West and South West England, and smaller
areas in southern and eastern England.  Similarly, there are areas across eastern
England with high critical loads on all four maps.  The maps based on the dominant
soil (Figure 3.3.1(a)) and area-weighted (Figure 3.3.1(d)) are the most similar and are
more ’speckled’ in appearance, showing greater variability from one square to the
next.  The maps based on the least and most sensitive soil types tend to show larger
areas within the same class.  The breakdown of the number and percentage of grid
squares in each critical loads class is given in Table 3.3.1.

Table 3.3.1: The number and percentage of 1x1 km grid squares by critical
loads class for the acidity critical load maps of England and Wales for non-peat
soils

Number and percentage of one km squares by critical loads
class for acidity critical load maps based on:

Critical loads
class (keq ha-

1yr-1) Dominant soil Most sensitive Least sensitive Area-weighted
≤ 0.2 5,898 (4%) 14,092 (10%) 1,496 (1%) 3,374 (2%)
0.2 – 0.5 27,873 (19%) 40,932 (28%) 14,633 (10%) 21,554 (15%)
0.5 – 1.0 41,183 (28%) 48,359 (33%) 28,164 (19%) 40,869 (28%)
1.0 – 2.0 33,145 (23%) 21,110 (14%) 46,266 (32%) 37,609 (26%)
> 2.0 37,581 (26%) 21,187 (15%) 55,121 (38%) 42,274 (29%)

This information is easier to interpret in the graph (Figure 3.3.2) below.



Uncertainty in Critical Load Assessment Models 77

Figure 3.3.1: 1 x 1 km square critical loads for non-peat soils in England and
Wales based on various criteria
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Comparison of acidity critical loads for different soils in each 1km square 
(England & Wales, non-peat soils)
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Figure 3.3.2: Comparison of acidity critical loads for different (non-peat) soils
within each one km grid square in England And Wales

This figure shows, not surprisingly, that there is a higher proportion of grid squares
with low critical loads for the map based on the most sensitive soil types, and
conversely a higher proportion of squares with high critical loads for the map based
on the least sensitive soil.  The distribution of the area-weighted mean critical loads
for all soil types within each 1x1 km square is similar to the distribution for the
dominant soil map, due to the influence of the dominant soil on the area-weighted
calculations.

Whilst Figure 3.3.2 shows the effect of different soil types on the critical load for the
whole of England and Wales, this effect may vary from one region of the country to
another.  For example, we have compared the critical loads for two regions: around
Snowdonia in North Wales, and the Breckland area in East Anglia.  In each case, the
data were extracted for a square or rectangular area around each region and the
critical loads based on the dominant soil, least sensitive soil, most sensitive soil, and
area-weighted mean critical load for all soils, compared (Figures 3.3.3(a)-(d)).  These
figures show that for Snowdonia, either all soils in each 1x1 km square are very
sensitive to acidification, or only a single sensitive soil type is present, since on each
graph the highest proportion of squares fall in the critical loads class with values in
the range 0.2-0.5 keq ha-1yr-1.  The results for Breckland vary according to the
method used to set the critical load values, reflecting the greater range of soil types
and sensitivities within this region.  The results for both Snowdonia and Breckland
differ from those for the whole of England and Wales.
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Figure 3.3.3(a) Acidity critical loads: dominant soil
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Figure 3.3.3(b) Acidity critical loads: most-sensitive soil
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Figure 3.3.3(c) Acidity critical loads: least-sensitive soil

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1(<0.2) 2(0.2-0.5) 3(0.5-1) 4(1-2) 5(>2)

Critical loads class (keq/ha/yr)

P
er

ce
nt

ag
e 

1k
m

 
sq

ua
re

s

Eng/Wales Breckland Snowdonia

Figure 3.3.3(d) Area-weighted acidity critical loads
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3.3.2 An index map comparing critical loads for different soil
types

The maps generated in Section 3.3.1 are useful for visualising the impact the
different soils within each 1x1 km grid square can have on the acidity critical loads
maps.  However, it is not easy to determine by eye where the critical loads are all the
same or all different, for example.  To provide this information an index map has
been generated to compare the critical loads for the dominant soil type with the
values based on the most sensitive, least sensitive and all soils (Figure 3.3.4).  The
breakdown of the percentage of squares in each category is given in Table 3.3.2
below.  This shows that for over 40% of the non-peat dominated grid squares in
England and Wales, the critical loads are the same for all soil types; the number of
soil types occurring in a one km grid square can vary from one to 11.  Just over 4%
of squares have different critical loads for each soil type within them.  The critical
load for dominant soil is the same as the most sensitive or the least sensitive in equal
proportions, at close to 25%.

Table 3.3.2: The number and percentage of one km grid squares in each
category of the critical load index map.

Map
class

Description of critical loads Number and
percentage one
km squares

1 Same for all soils 61,892  (42.5%)
2 Different for all soils 6,049    (4.2%)
3 Dominant same as most sensitive and area weighted 67        (0.05%)
4 Dominant same as most sensitive 38,091  (26.1%)
5 Dominant same as least sensitive 39,587  (27.2%)
6 Dominant same as area-weighted 1        (<0.01%)
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Figure 3.3.4: Critical load index map

  

Critical loads for all soils the same
Critical loads for all soils different
Critical load for dominant soil same as most sensitive or area-weighted
Critical load for dominant soil same as most sensitive soil
Critical load for dominant soil same as least sensitive soil
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3.3.3 Critical load variance map

The critical load index map provides one way of comparing the critical load values for
different soil types, but it is not easy to interpret the detail visually.  Therefore, this
map has been simplified to give a three-class critical load variance map (Figure
3.3.5).  This shows that for over 40% of grid squares, the critical loads of the sub-
dominant soils are the same as the dominant soil.  For a further 26% of squares, the
critical load of the dominant soil is the same as that for the most sensitive soil
occurring in the square; other sub-dominant soil types present may have higher
critical loads.  However, in these areas the user can be fairly confident in using the
national map for local-scale assessments, although small areas of some soil types
may not be represented as the one km soils data are derived from the 1:250,000
scale soil maps. The remaining 31% of squares, mapped in yellow, indicate areas
where a sub-dominant soil has a lower critical load than the dominant soil.
Therefore, the critical load for the dominant soil may be inappropriate for some site-
level assessments in these areas and more information should be gathered on the
soil types in the area of interest.  This map could be useful when considering using
national data for point or site-specific assessments (see Section 6).
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Figure 3.3.5 Critical load variance map
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3.4 Uncertainties in applying national critical loads
to designated sites

To examine the use of national data at the site-specific scale, critical load values
were extracted from the national maps for 17 Special Areas of Conservation (SACs)
across England and Wales.  The following acidity critical load values were compared:

(a) Four values extracted for the site-centroid (single 1x1 km square):

• critical load for the dominant soil;
• critical load for the most sensitive soil;
• critical load for the least sensitive soil;
• area-weighted critical load for all soils.

(b) Area-weighted critical loads for dominant soils for the whole site (all land parcels):

• for all site squares;
• for squares containing acid grassland on the national map;
• for squares containing bog on the national map;
• for squares containing dwarf shrub heath on the national map;
• for squares containing montane on the national map;
• for squares containing calcareous grassland on the national map;
• assuming all site squares contain unmanaged woodland;
• for squares containing unmanaged woodland on the national map.

The different critical load values are given in Table 3.4.1.  The boxes shaded in grey
denote the habitats for which there are designated features for that site.  However,
for some of these there are no critical loads on the national maps, due to the
methods and data used to derive the national habitat maps.  Four out of the 17 sites
are dominated by peat soils and therefore critical loads for all soils, the least and
most sensitive soils have not been assigned for these site centroids. The results for
(a) above, and for the non-woodland habitats from (b) above, are also given in Figure
3.4.1.  This shows that for most of the sites examined, the critical load values based
on the methods listed above are very similar.  The notable exceptions are:

Site 5: Ingleborough. This is a large site with varied vegetation cover.  The values for
the site centroid (dominant, minimum, area-weighted) are all lower than the area-
weighted critical loads for the habitat areas of dwarf shrub heath and bog.  The
centroid maximum critical load is similar to the habitat critical load for calcareous
grassland. The area-weighted value for the site (based on dominant soils) is about
midway between the lowest and highest critical load values derived.

Site 11: Craven Limestone. The area-weighted value for the bog habitat is much
lower than any of the other critical load values derived for the site, showing that in
this case a value extracted and based on the site centroid would be inappropriate for
applying to bog habitat.

Site 13: Breckland. The values for the dominant soil and the most sensitive soil at the
site centroid are close to the habitat value for calcareous grassland.  The value
derived for the acid grassland habitat falls mid-way between the area-weighted
values for both the centroid and the site as a whole.  The critical load for the most
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sensitive soil at the site centroid is much lower than the values derived for the
habitats at this site.

In addition, since critical loads for woodland habitats are based on a different method
(simple mass balance SMB equation), there are just two values for comparison: (i)
area-weighted critical loads assuming all site grid squares contain unmanaged
woodland; (ii) area-weighted critical loads based on only those site grid squares
containing unmanaged woodland on the national map.  Ten of the 17 sites have
designated areas of woodland and nine of these have unmanaged woodland
according to the national habitat maps.  One of these nine sites (no. 7) has the same
critical load for both the unmanaged woodland squares and assuming all squares
within the site are woodland; it is therefore possible that this site contains an area of
unmanaged woodland within all the grid squares making up the site.  There are small
differences in the two critical load values for three of the nine sites, and larger
differences for the other five sites (numbers 5, 9, 10, 11 and 14).

This exercise illustrates the problems that may arise if only the critical load for the
dominant soil at the site centroid, and/or the area-weighted mean based on all
squares and assuming the whole site is a single habitat type, is used in assessing
the risk of acidification to habitats associated with designated features.
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Legend to Figure 3.4.1:

Critical loads based on soil type(s) for site centroid:

cen-dom critical load for the dominant soil
cen-min critical load for the most sensitive soil
cen-max critical load for the least sensitive soil
cen-aw area-weighted critical load for all soils

Area-weighted critical loads based on dominant soil type in each site square:

aw-dom critical load for all site squares
aw-ag critical load for squares with acid grassland on national map
aw-bog critical load for squares with bog on national map
aw-dsh critical load for squares with dwarf shrub heath on national map
aw-cg critical load for squares with calcareous grass on national map
aw-mon critical load for squares with montane habitat on national map

3.5 Uncertainties in mapping habitats
Since February 2003, national critical loads have been mapped for Biodiversity
Action Plan (BAP) broad habitats sensitive to acidification and/or eutrophication.
Other habitats are not considered in this study.  The methods and data used to map
the sensitive habitats nationally are described in detail by Hall et al. (2003a, 2004a)
and will not be repeated here; however, the methods were agreed in consultation
with representatives from the Department for Environment, Food and Rural Affairs
(Defra) Terrestrial Umbrella (UK Research on the Eutrophication and Acidification of
Terrestrial Ecosystems), Joint Nature Conservation Council (JNCC) CCW, Scottish
Environmental Protection Agency (SEPA), other habitat experts and Defra.  This
section focuses on the uncertainties in the data and methods used.

Broad habitat maps were derived using the best available data to give national
pictures of the main habitat types, adequate for national critical loads mapping
purposes.  As such, they may not include every small area of sensitive habitat at the
regional, or especially, the local scale.

The broad habitat maps are based on combinations of national data sets and maps
of land cover, forest land use, species distributions, the National Vegetation
Classification (NVC), soils and altitude.  Table 3.5.1 lists the data sets used in the
generation of each broad habitat map.  Individual data sets were generated at
different times, for different purposes (not specifically for critical loads research) and
at different spatial resolutions.  Hence, there are inherent uncertainties in each data
set as well as with the methods used to combine them.
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Table 3.5.1: Data sets used in the derivation of Biodiversity Action Plan broad
habitat maps for the UK
Broad habitat Land

cover1
Forest
land
use2

Species3 NVC4 Soils5 Altitude6

Acid grassland
Calcareous grass
Dwarf shrub heath
Bog
Montane
Supralittoral
sediment
Managed conifer
Managed broadleaf
Unmanaged wood
Atlantic oak wood
1 Land Cover Map 2000 (Fuller et al., 2002)
2 Forest Research data on forest land use (Forestry Commission, 2001, 2002a,
2002b)
3 Species data from the Biological Records Centre, Centre for Ecology and
Hydrology
4 National Vegetation Classification data provided by the Joint Nature Conservation
Council
5 Soils data from the National Soils Resources Institute, Macaulay Institute and the
Department of Agriculture and Rural Development, Northern Ireland
6 Altitude data from a 50 m resolution digital terrain model

Habitat areas for freshwaters (lakes and streams) are based on digital catchment
boundaries of the 1,722 sites sampled throughout the UK for critical loads research
(Hall et al., 2004a); uncertainties in the derivation of these areas are not considered
in this report.

The sections below (Sections 3.5.1 to 3.5.4) discuss the:

• uncertainties in individual data sets;
• uncertainties in the methods used to map broad habitats;
• co-location of the broad habitat types;
• critical load values by broad habitat.

3.5.1 Uncertainties in individual data sets

Land Cover Map 2000 (LCM2000)

LCM2000 is a land cover map based on a thematic classification of spectral data
recorded by satellite images.  External data sets were used in its generation to help
refine the spectral classification.  The map is based on 25 m resolution imagery,
subsequently converted to land parcels (polygons) and classified by land cover type.
A full description of the derivation of LCM2000 is given by Fuller et al. (2002).
LCM2000 identified 16 ‘target classes’ which were divided into ‘subclasses’ enabling
the full complement of broad habitats to be mapped (Table 3.5.2).

For mapping BAP broad habitats for national critical loads research, one km
summary land cover data have been used, which provide the area of each subclass
in each one km square of the UK; the polygon land cover data are too detailed and
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too large to work with at the national scale.  Thus, LCM2000 forms the base map for
all the terrestrial habitats mapped for critical loads, enabling areas of each habitat to
be determined at the one km and national scale, for quantifying the potential impact
of deposition scenarios on habitats of high conservation value.

Fuller et al. (2002) examined the correspondence between LCM2000 and field
survey data from Countryside Survey 2000 (CS2000) to provide some estimates of
uncertainty in the LCM2000 data.  CS2000 provides field survey data for 569 x 1 km
grid squares across the UK (Haines-Young et al., 2000) and the results of this survey
have been compared with LCM2000 data for the same areas.  However, it must be
noted that such correspondences are not a true measure of accuracy, since the
CS2000 was not used as ‘ground truth’ data for generating LCM2000.  Fuller et al.
(2002) reported an overall correspondence of around 85 per cent at the target class
level.  The correspondences varied across the UK, with the largest differences in
upland areas where both field and satellite mapping are the most problematic and
where some of the species most sensitive to air pollution effects are to be found.
There are uncertainties in the areas of broad habitats determined from both
LCM2000 and CS2000, since the habitats are artificial constructs rather than
something real on the ground, consisting of aggregations of spectral classes in terms
of LCM2000, and ground surveyors judgements in the case of CS2000.

Table 3.5.2:  Broad habitats and their relationship to LCM2000 target classes
and subclasses
Broad habitat LCM target class LCM subclasses
22. Inshore sublittoral Sea/Estuary Sea/Estuary
13. Standing water/canals Water (inland) Water (inland)
20. Littoral rock Littoral rock

Littoral sediment21. Littoral sediment
Littoral rock and
sediment

Saltmarsh
18. Supralittoral rock Supralittoral rock
19. Supralittoral sediment

Supralittoral rock &
sediment Supralittoral sediment
Bogs (deep peat) Bogs (deep peat)12. Bogs

Dense dwarf shrub heath
10. Dwarf shrub heath

Dwarf shrub heath
(wet/dry) Open dwarf shrub heath

15. Montane habitats Montane habitats Montane habitats
1. Broadleaved woodland Broadleaved woodland Broadleaved/mixed

woodland
2. Coniferous woodland Coniferous woodland Coniferous woodland

Arable cereals
Arable horticulture

4. Arable and horticultural Arable and horticultural

Non-rotational horticulture
Improved grassland Improved grassland5. Improved grassland

Setaside grass
6. Neutral grassland Neutral grass
7. Calcareous grassland

Neutral / calcareous
semi-natural / rough
grasslands Calcareous grass

8. Acid grassland Acid grass
9. Bracken

Acid grass and bracken
Bracken

11. Fen, marsh and
swamp

Fen, marsh and swamp Fen, marsh and swamp

Suburban / rural developed17. Built-up areas,
gardens

Suburban & urban
Continuous urban

16. Inland rock Inland bare ground Inland bare ground
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The use of external data sets to refine the spectral classification can lead to other
uncertainties, since the data sets may be of different resolutions and be designed for
other purposes, as well as having their own uncertainties.  Such data were used for
mapping the following LCM2000 classes:

(i) Semi-natural grasslands and bracken

These habitats present problems in their distinction using satellite imagery alone.
For example, acid, neutral and calcareous grasslands give no consistent spectral
characteristics by which they can be identified.  An ancillary data set of soil acid
sensitivity classes (Hornung et al., 1995) was used, though it lacked sufficient
discrimination due to the soil pH ranges on which the classes were based, that is:

• pH < 4.5 highly acid sensitive - used to determine acid grasslands;
• pH > 4.5 and < 5.5 moderately acid sensitive - used to identify neutral

grasslands, but really slightly acid;
• pH > 5.5 low acid sensitive – used to identify calcareous grasslands, but would

also contain some neutral areas.
Hence, for the national critical loads habitat mapping, the LCM2000 grassland data
were combined with other data sets, to improve the distributions of acid grassland
and particularly calcareous grasslands; neutral grasslands were not mapped for
critical loads purposes.

(ii) Heath, moor and bog

The LCM2000 heath and moor classes were distinguished from the bog class using a
British Geological Survey map1 showing peat drift greater than 0.5 m deep; hence
the LCM2000 bog class is more correctly ‘bog (deep peat)’.  Fuller et al. (2002) report
that this method led to a conservative estimate of the area of bog broad habitat,
compared to the CS2000 estimate.

(iii)  Montane

This habitat class was defined as all vegetated ground above 600 m, and therefore
made use of a digital terrain model to impose the altitude constraint to the class.

Forest Research (FR) forest land use data

LCM2000 distinguishes between coniferous and broadleaved woodland.  However,
for critical loads mapping (and critical load calculations) it is important also to
distinguish between managed and unmanaged woodland areas, and this distinction
is not possible from satellite-derived data alone.  FR provided one km databases of
the areas of managed coniferous, managed broadleaved and unmanaged (ancient
and semi-natural) woodland.  To maintain consistency with using LCM2000 as the
base map for the UK critical load habitat maps, the FR data were used to determine
the ratio of the different woodland types for each one km square. The ratios were
then applied to the LCM2000 woodland data.  For example, if the FR data for a single
one km square consisted of 20 ha managed conifer, 20 ha managed broadleaved
and 10 ha of unmanaged woodland and the total area of all woodland on LCM2000
for the same square is 70 ha, the calculated woodland areas applied to the grid
square would be: 28 ha managed conifer (0.4 x 70), 28 ha managed broadleaved

                                                
1  http://www.bgs.ac.uk/products/digitalmaps/digmapgb_drift.html
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(0.4 x 70) and 14 ha unmanaged woodland (0.2 x 70).  The areas of the different
woodland types mapped by LCM2000 and FR for GB are compared in Section 3.5.2.

Species distribution data

Work undertaken within the Biological Records Centre at Monks Wood identified all
species associated with each BAP broad habitat; species may be associated with
more than one habitat type.  The species data for each habitat were mapped by BRC
to give the percentage of species in each 10 km grid square of the UK, adjusted for
the latitudinal gradient in species diversity (Hall et al., 2003a,b).  In combining the
species data with LCM2000 data, only those 10 km squares with a percentage of
species above a specified threshold value were used.  This aimed to represent the
key areas of habitats nationally.  For example, calcareous grassland is assumed to
be present in a 10 km square, provided at least 50% of the associated species occur;
for acid grassland, dwarf shrub heath and bog, a threshold of 40% was applied (Hall
et al., 2003a).   A slightly different approach was used for supralittoral sediments,
where the distributions of five key dune grassland species were used to represent the
habitat.

Once the species distributions were defined, they were used to generate ‘habitat
masks’ at 10 km resolution.  The final habitat areas were subsequently mapped by
selecting the one km squares of the appropriate LCM2000 class(es) that fell within
each 10 km habitat mask square.  Therefore, within each 10 km square it was
assumed that the species representing the habitat could occur in every one km grid
square; hence the habitat area could be overestimated. Conversely, where squares
were omitted from the mapping procedure due to having less than the percentage
threshold value, or one km squares occurred outside the 10 km squares, the habitat
areas could be underestimated.

National Vegetation Classification (NVC)

Two of the habitats mapped used 10 km data of the distribution of NVC communities
(Rodwell, 1990, 1991, 1992, 2000), namely Racomitrium heath for the montane map
and woodland class W17 (Quercus petraea – Betula pubescens – Dircranum majus)
for Atlantic oak, mapped as part of the unmanaged woodland for nutrient nitrogen.
As for the species distribution data, we assumed that the NVC communities occupied
all one km grid squares within each 10 km square for habitat mapping purposes, so
again areas of habitat may be under- or overestimated.

Soils data

The acidity critical load values for the non-woodland terrestrial habitats are all based
on the one km empirical soil acidity critical loads map.  Critical loads are assigned
according to the mineralogy and weathering rate of the dominant soil in each one km
grid square.  For squares dominated by peat soils, a method based on a critical soil
solution pH of 4.4 (Hall et al., 2004a; Calver, 2003; Skiba and Cresser, 1989; Calver
et al. 2004) is applied.  Sub-dominant soils in the one km grid squares may have
lower or higher critical loads.  Acidity critical loads for the woodland habitats are
calculated using a SMB equation and use the soil critical load values as the
weathering rate inputs to the equation.  Where more than one habitat is mapped in a
single one km grid square, the acidity critical loads are still based on the dominant
soil type, even though the habitats may not all occur on the same soil.  This is a
limitation due to the spatial resolution of available soils data and the lack of
knowledge on the precise relationships between habitat types and soil types.  CEH
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have addressed the issue of soil and habitat relationships for the setting of
appropriate critical loads under a separate contract with the Environment Agency (An
Investigation into the Best Method to Combine National and Local Data to Develop
Site-Specific Critical Loads, see Wadsworth and Hall, 2005).

To avoid setting unrealistically low acidity critical loads to areas of calcareous
grassland, grid squares with a soil acidity critical load value less than 2.0 keq ha-1 yr-1

were removed from the calcareous grassland map.  However, these grid squares
were included in the habitat distribution map for nutrient nitrogen, where the critical
load value assigned is not dependent on soil type.

An analysis of the dominant soil types within the one km grid squares of the bog
broad habitat in England and Wales shows 55.7% of squares to be dominated by
peat soil, 33.5% by organo-mineral soils (mineral soils with a peaty top) and 10.8%
by mineral soils.  Closer examination of the soils data (England and Wales only)
shows that 30% of the squares dominated by mineral or organo-mineral soils contain
some peat as a sub-dominant soil, leaving 14.4% of bog habitat squares that do not
contain any peat soil.  Hence, as the bog habitat could be expected to occur on peat
soils only, the critical load values for the squares dominated by mineral or organo-
mineral soils may be inappropriate for this habitat. Critical loads calculated for peat
soils based on critical pH may give critical load values higher or lower than the critical
load for the dominant soil based on the mineralogy and weathering rate.  In areas of
higher run-off, critical loads for peat soils may be higher than empirically derived
values for the dominant soil, due to the dependence of the critical pH method on run-
off.

In setting the nutrient nitrogen critical loads by EUNIS habitat class (Davies and
Moss, 2002; Achermann and Bobbink, 2003), it was necessary to distinguish wet and
dry areas of acid grassland and dwarf shrub heath.  This was done using a one km
map of classes of the Hydrology of Soil Types (HOST; Boorman et al., 1995).  These
HOST classes are also based on the dominant soil type in each one km grid square;
other soil types present may have different hydrological characteristics.  Hence there
are unquantified uncertainties in the classification of wet and dry habitat areas.

The key problem here is the lack of data, at the national scale, on the co-location of
soils and habitats.

In addition to the uncertainties arising from how the data are used and applied, there
will be uncertainties in the raw soils data; the one km soil databases generated by
the soil surveys are derived from 1:250 000 scale soil maps and there is no estimate
of the accuracy of these maps and data.

Altitude data

The LCM2000 montane class was defined using altitude criteria and selecting all
vegetated areas above a threshold of 600 m.  However, the JNCC description of the
montane broad habitat states “an altitude limit is not a suitable marker for the start of
the montane zone as the lower altitude limit of the zone varies in different parts of the
UK.  Therefore the presence of arctic/alpine species is used to define these types.”

For critical loads mapping purposes three data sets were combined to estimate the
habitat distribution, following discussion with habitat experts and trying a number of
options.  The final map was based on LCM2000 montane and inland bare ground
classes that fell within 10 km squares of the NVC Racomitrium heath distribution and
were above an altitude of 600 m as defined from a 50 m (horizontal) resolution digital
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terrain model (DTM).  Uncertainties in the DTM have not been quantified, but are
unlikely to be significant given other uncertainties.

3.5.2 Uncertainties in methods used to map broad habitats

The LCM2000 data provide the area of each land cover class, and therefore each
broad habitat, within each one km grid square.  For critical loads research, the areas
of broad habitats are required for assessing the potential impacts of deposition
scenarios across the UK.  Hence, LCM2000 is used as the base map for all terrestrial
broad habitat maps for critical loads work.

When overlaying LCM2000 with 10 km ancillary data (such as species distributions,
NVC class data), only those one km LCM2000 grid squares that fall within the
selected 10 km squares are included in the habitat maps.  The woodland habitat
areas mapped were restricted to where data existed on both LCM2000 and the FR
maps, with the exception of NI where only LCM2000 data were available.

The main uncertainties associated with the methods used are:

• combining data of different resolutions, such as one km and 10km;
• combining data from different sources and designed for different purposes;
• applying a threshold in selecting the 10km squares representing the species for a

habitat;
• overestimating habitat areas by assuming species data (or NVC communities)

occupy all one km grid squares within each 10 km square selected;
• underestimating habitat areas by only including one km land cover squares that

fall within 10 km species (or NVC) squares - the LCM2000 classes may occupy
other areas;

• underestimating the area of woodland habitats by only selecting one km grid
squares where both LCM2000 and FR woodland area data exist.

Whilst the uncertainties can be identified, it is not possible to quantify the uncertainty
in the areas of habitats mapped.  However, comparisons with other data sets can be
made.   For example, the Countryside Survey CS2000 uses 569 x 1 km squares as a
stratified random sample; the stratification used is the ITE Land Classification in
which each square is allocated to one of 40 different land classes, 24 from England
and Wales and 16 from Scotland.  National estimates for broad habitat extent were
generated using sample data by calculating the mean and standard errors of the
habitat areas for each land class; these sample means were weighted by the area
the land class occupies nationally and the results summed to produce a national total
(Howard et al., 2003).   For the non-woodland terrestrial habitats, we compared the
habitat areas from LCM2000, CS2000 and the critical load broad habitat maps.  For
the woodland habitats, we included the FR National Inventory of Woodland and
Trees.  However, it should be noted in the comparison and interpretation below that
no one data set can be considered to be the ‘correct’ one.  Each data set has been
generated at different times, using different methods and for different purposes and
end-users.  The comparison is provided for information only.

Non-woodland habitats (Table 3.5.3)

Table 3.5.3 shows that LCM2000 data give the largest areas for all non-woodland
habitats for the UK, with the exception of bog.  There are differences in the way the
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bog and dwarf shrub heath habitats are identified and mapped by LCM2000 and
CS2000.  Bog is defined as deep peat in LCM2000 and is identified using both
satellite data and a peatland mask based on British Geological Survey drift mapping
(Section 3.5.1).  Hence, the area of bog mapped is smaller than dwarf shrub heath.
For CS2000, the bog and dwarf shrub heath habitats have been identified floristically
on the basis of indicator species, resulting in a larger area of bog than dwarf shrub
heath being recorded nationally.

LCM2000 produces the largest estimate of calcareous grassland. This may be
influenced by the use of pH 5.5 to indicate low sensitivity. However, distinguishing
different grassland types is not always easy in the field. Refining the LCM2000
distribution using species data (CL results) reduces the habitat area, though this is
still larger than the CS2000 estimate.

The LCM2000 and CL areas of the montane habitat are considerably larger than the
CS2000 estimate; again, this may be influenced by the use of the 600 metre
elevation rule.

In summary, the non-woodland habitat maps derived for critical loads work are
greater than those estimated from CS2000, with the exception of bog habitat for the
reasons given above.  The various refinements applied to CL habitat maps all have
the effect of reducing the area, while no refinement increases the area; this is
especially noticeable for calcareous grassland.

Woodland habitats (Table 3.5.4)

Table 3.5.4 shows good correspondence between LCM2000 and CS2000 areas for
all woodland types.  Fuller et al. (2002) explain that the extent and direct (spatial)
agreement are similar for coniferous woodland, mainly because this woodland type
tends to be planted in larger blocks.  Although the extent of the broadleaved, mixed
and yew woodland category is similar for both LCM2000 and CS2000, direct
agreement is lower because many woodlands of this type tend to be smaller than the
minimum mappable unit of 0.5 ha used by LCM2000, compared to that for CS2000 of
0.04 ha.

The FR data give a lower total area of woodland for GB, at 83% of the LCM2000
total.  This difference may be due, at least in part, to the data sets provided by FR
excluding woodlands less than two ha in area.  In addition, the FR data map land
use, not land cover.  The CL map areas are considerably lower because of the
LCM2000 one km grid squares selected due to their co-location with FR data; the
total area of woodland on the CL maps is equivalent to 81% of the FR total, but only
67% of the LCM2000 total.
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3.5.3 Co-location of broad habitat types

The broad habitats which have been mapped nationally for critical loads research are
those sensitive to acidification and/or eutrophication.  Areas of other habitats are not
considered in this study (Section 3.5, Table 3.5.1).

The maps show the distributions of the various habitats across the UK, with different
habitat types dominating in different regions.  Calcareous grassland and managed
broadleaved woodland generally dominate in the South and East of Britain, acid
grassland, dwarf shrub heath and managed conifers dominate the uplands of Wales,
northern England and southern Scotland, and dwarf shrub heath and montane
dominate the upland regions of northern Scotland.  Figure 3.5.1 maps the dominant
sensitive habitat (that occupying the largest area) in each one km grid square of the
UK.  However, a number of different habitats may occur in the same one km grid
square.  This section describes the co-location of habitats being considered.
Because distributions are bounded (0 to 100 per cent), standard regression is not
appropriate as a measure of association.  For example, although heaths and bogs
are associated, once the proportion of heaths is greater than 50 per cent, the area of
bog must be less than 50 per cent.

The percentage of one km grid squares across the UK containing one or more of the
nine sensitive terrestrial habitats is shown in Table 3.5.5 below.  The majority (69 per
cent) of one km grid squares contain one or two sensitive habitats, and almost 22 per
cent contain three habitats.  The maximum number of sensitive habitats found to
occur in the same one km grid square is seven, but this only occurs in three squares,
representing 0.001% of all squares (206,732) containing any sensitive habitat.

Table 3.5.5: The percentage of one km grid squares in the UK containing one or
more habitats sensitive to acidification and/or eutrophication.

Number of habitats Number of one km
squares

Percentage of one km
squares

1 70,332 34.0%
2 71,451 34.6%
3 44,666 21.6%
4 16,354 7.9%
5 3,737 1.8%
6 189 0.09%
7 3 0.001%

There were 225 possible combinations of the nine sensitive habitat types occurring in
any one km grid square of the UK.  The occurrence of each individual habitat (area
and spread across the UK) and its associations with other habitats have been
examined and the results presented in Table 3.5.6.  Note the following definitions that
must be considered in interpreting the results:

• Total habitat area = sum of all sensitive habitats mapped for critical loads and
as listed in Table 3.5.7.

• Percentage of UK squares = % of UK one km squares that contain sensitive
habitat(s).  Total = 206,732 x 1 km2.

• Percentage of habitat one km squares = % of all one km squares that contain
the named habitat, either singly or in combination with other habitats.
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Dwarf shrub heath and acid grassland habitats

• Occupy largest areas of all habitats considered (34% and 20.6% respectively).
• Have largest spread across the country occurring in more than 40% (44.8% for

dwarf shrub heath, 43.2% for acid grassland) of UK one km squares.
• Relatively low frequency (~10% of habitat squares) of habitats occurring alone.
• Most frequently occur in combination with other habitats (51-56% of possible

habitat combinations), mainly with each other and with bog and managed
coniferous woodland.

Managed coniferous woodland

• Occupies 11.1% of total habitat area and occurs in 22.6% of UK one km squares.
• Rarely occurs alone (5.5% of habitat squares).
• Found in 45.3% of possible habitat combinations and mainly with acid grass,

dwarf shrub heath and managed broadleaved woodland.

Managed broadleaved woodland

• Similar in area to managed coniferous woodland.
• Widespread distribution, occurring in 41% of UK one km squares.
• Found both alone (24.3% of habitat squares) and in 45.8% of the possible habitat

combinations, mainly with calcareous grassland and unmanaged woodland.

Bog

• Occupies 7.3% of total habitat area and occurs in just 10.1% of UK one km
squares.

• Relatively low frequency (10.2% of habitat squares) of occurring alone.
• Found in 36.9% of the possible habitat combinations, mainly with acid grassland,

dwarf shrub heath and managed coniferous woodland.

Unmanaged woodland

• Occupies 5.4% of total habitat area but occurs in 20% of UK one km squares.
• Rarely found alone (7.2% of habitat squares).
• Found in 45.3% of possible habitat combinations, mainly with managed

broadleaved woodland, calcareous grassland and managed coniferous
woodland.

Calcareous grassland

• Occupies less than 5% of total habitat area but occurs in 18.8% of UK one km
squares.

• Found equally alone (38.7% of habitat squares) and in combination with other
habitats (37.3% of possible combinations), mainly with managed broadleaved
woodland, unmanaged woodland and managed coniferous woodland.

• The high occurrence of this habitat alone may also be due to its association with
other habitat types (such as improved grassland) that are not mapped for critical
loads.

Montane
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• Occupies 4.1% of the total habitat area and only occurs in 2.8% of UK one km
squares.

• The scarcity of this habitat means it is found in relatively few habitat combinations
(14.7%) and occurs mainly with other upland habitat types, such as acid
grassland and dwarf shrub heath.

Supralittoral sediment

• Occupies the smallest area at just 2.8% of the total habitat area and is found in
only 5.8% of UK one km squares.

• Found mainly alone (52.5% of habitat squares), though this may be partly due to
its coastal nature and association with other habitat types not mapped for critical
loads.

• Occurs in 31.6% of possible habitat combinations, mainly with acid grassland and
dwarf shrub heath.
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 Figure 3.5.1: Map showing the dominant broad habitat in each one km grid square
excluding habitat areas less than 10 ha (10% of a one km grid square). Individual
maps used for critical loads purposes include all habitat areas.

Acid grassland
Calcareous grassland
Dwarf shrub heath
Bog
Montane
Managed coniferous woodland
Managed broadleaved woodland
Unmanaged woodland
Supralittoral sediments (dune grassland)
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3.5.4 Acidity critical load values by broad habitat

Acidity critical loads for non-woodland terrestrial habitats are set according to the
weathering characteristics of the soil (Section 3.3).  This information on weathering
rates is also used in the SMB equations used to derive acidity critical loads for
woodland habitats.  As different habitats are likely to thrive in different soil conditions
and therefore occur on different soil types, one may expect to observe a difference in
the critical load values by habitat type.  However, it must be remembered that critical
load values are based on the dominant soil type in each one km grid square,
regardless of habitat type (Section 3.3).  Table 3.5.7 shows the minimum, maximum
and mean acidity critical load values derived from all one km squares mapped for
each habitat.

Table 3.5.7: Acidity critical load values by broad habitat.  Results ordered by
descending mean value.

Acidity critical loads (keq ha-1 yr-1)Broad habitat
Minimum Maximum Mean SD

Calcareous grassland 4.0 4.0 4.0 0
Unmanaged woodland 0.07 12.7 3.02 3.08
Managed broadleaved woodland 0.1 13.0 2.79 3.23
Managed coniferous woodland 0.1 13.4 1.94 2.35
Dwarf shrub heath 0.05 4.0 0.65 0.69
Acid grassland 0.05 4.0 0.62 0.71
Bog 0.05 4.0 0.53 0.54
Montane 0.1 4.0 0.38 0.22

These results show the highest critical loads for calcareous grassland; not surprising,
given that the soils this habitat occurs on will have a high buffering capacity to offset
incoming acid deposition. Hence, high critical load values were set for these soils
(Hall et al., 2003a, 2004a).  The woodland habitats have a greater range of critical
load values, and higher mean values than the remaining non-woodland habitats.
This is because the SMB equation includes the critical leaching of acid neutralising
capacity (ANC).  In deriving empirical critical loads for soils (applied to non-woodland
habitats), this term is effectively zero, resulting in lower critical loads.  The remaining
habitats are largely associated with upland areas and all have values in the same
general range.  The mean values for dwarf shrub heath and acid grassland are very
similar, also reflecting their similar spatial distributions (Section 3.5.3).  The mean
value for the bog habitat falls between that of acid grassland and montane, and the
latter has the lowest mean value, reflecting the thin, base poor soils found in most
montane regions.
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3.6 Conclusions (national scale uncertainty)
3.6.1 Critical loads in managed coniferous woodland

• The coefficients of variation of critical load parameters are smaller than expected
(smaller than many of the input uncertainty ranges), due to a compensation of
errors mechanism (Skeffington et al., 2006). However, since this mechanism is
related to the correlation between parameters, and there is some uncertainty in
the value of the correlation coefficients used to connect the various parameters,
this area requires further study.

• For policy development, the uncertainty in critical load exceedance is an
important parameter. This study enabled a probability of exceedance to be
calculated for managed coniferous woodland in the UK, showing that 35 per cent
of the habitat has a greater than 95 per cent probability of exceedance for acidity
and 98 per cent for nutrient nitrogen.

• The analysis presented in Section 3.1 only applies to critical loads for managed
coniferous woodland.  Uncertainties for other habitat types, even managed
broadleaved woodland whose critical loads are also calculated by the mass
balance approach, would have to be re-calculated. This is because the probability
of exceedance is a function of how far the deposition is from the critical load
function, which will vary both spatially and between habitats.

• A sensitivity analysis showed that where the managed conifer acidity critical load
is small (less than 0.2 keq ha-1 yr-1), Ca deposition is more important than Ca
weathering.

3.6.2 Variance in acidity critical loads by soil type

• Acidity critical loads for England and Wales based on the dominant soil in each
1x1 km grid square are similar to the area-weighted critical load values based on
all soil types within each 1x1 km square.  The number of 1x1 km squares with
critical loads above and below 1.0 keq ha-1 yr-1 are similar for both maps.

• Acidity critical loads based on the most sensitive soil type have values of ≤ 1.0
keq ha-1 yr-1 in approximately 70 per cent of the 1x1 km squares in England and
Wales.  Conversely, about 70 per cent of the squares have critical loads above
1.0 keq ha-1 yr-1, when based on the least sensitive soil in each grid square.

• The variance in acidity critical loads by soil type differs by region.  For example,
in Snowdonia most soil types tend to be very sensitive to acidification and have
low critical loads compared to the Brecklands, where the soil types cover a broad
range of sensitivities and critical loads.

• The acidity critical load is the same for all soil types within 42 per cent of the 1x1
km squares in England and Wales, and only different for all soil types within four
per cent of the squares. The acidity critical load for the dominant soil is the same
as that for the most sensitive soil type in 26 per cent of 1x1 km squares in
England and Wales.

• The acidity critical load is smaller for the sub-dominant soil in 31 per cent of 1x1
km squares in England and Wales.
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3.6.3 Uncertainties in applying national critical loads to
designated sites

• The acidity critical loads based on different soils (for the site centroid, or area-
weighted for all site squares, or area-weighted by soil and habitat) were similar
for 14 out of 17 SACs examined.

• Anomalies in setting appropriate critical load values for habitats within SACs arise
for sites that are large with a variety of soil and vegetation types, or where small
unusual habitats occur within other habitats, for example, a small area of bog
within an area of limestone.

3.6.4 Uncertainties in mapping habitats

• The uncertainties in mapping Biodiversity Action Plan broad habitats for critical
loads research can be identified, but not quantified.

• There are uncertainties inherent in the individual data sets used to generate the
habitat maps.  The data come from many sources, and rarely with any
information on their associated uncertainties.

• The data sets used were generated at different times, for different purposes
(such as land cover vs land use) and are of differing spatial resolutions.

• Additional uncertainties in the habitat areas arise from the manipulation and
combination of the different data sets.

• More than one broad habitat can be mapped in a one km grid square, but the
acidity critical loads for all habitats occurring in a square are all based on the
dominant soil type, which may or may not be appropriate for the habitat in
question. More information is required to link the habitat types to appropriate soil
types.

• The mean acidity critical load values by broad habitat show the highest values for
the managed woodland habitats, because of the inclusion of the leaching of acid
neutralising capacity in the calculations, which is effectively set to zero for the
non-woodland habitats.

• Despite the dependence of acidity critical loads on the dominant soil, the mean
critical loads nationally appear to be appropriate, with higher critical loads values
for calcareous grassland - a habitat found on soil types with a high buffering
capacity - and the lowest mean critical loads for the montane habitat occurring on
thin base-poor soils.

• The maps provide a national picture of the distributions of broad habitats on a
one km grid, suitable for critical loads mapping purposes at the national scale,
where the underlying soils data are also at one km resolution.  However, due to
the uncertainties identified, it is inadvisable to attempt to interpret these maps at
a local or site-specific scale.
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4 Comparison of national and
site-specific uncertainties

Summary

• This section compares the uncertainties based on site-specific and national
data for three woodland sites.

• The suitability of criteria, models and data used in both site-specific and
national scale assessments is discussed.

• Uncertainty ranges depend on whether site-specific or national data are used.
• With only three sites, it was not possible to establish a clear relationship

between the site-specific and national estimates of uncertainty.
• Critical load models and criteria do not exist for all habitats and species.
• Default values derived from very limited measurements have been used for

some parameters, due to a lack of site-specific data.

4.1 Input data to uncertainty analysis
In order to provide a measure of the appropriateness of applying the models at the
site-specific scale, we incorporated estimates of uncertainty in both national and site-
specific data into the calculation of critical load exceedance for individual sites.
National scale data were designed for national and regional policy development and
may not give accurate answers on individual sites. Use of national data to calculate
exceedance may thus lead to vulnerable sites being unprotected, or alternatively to
unnecessary expenditure on emission control. This section is an exploration of the
extent to which using data measurements from research sites leads to different
results from those achieved by using national data applied to the same sites. It uses
uncertainty analysis to evaluate the accuracy and precision of exceedance estimates
from the two types of data.

This study focused on three coniferous woodland sites across the UK: Liphook in the
South East of England, Thetford in the East of England and Aber in Wales for which
site-specific data were available. The choice of default values, ranges and
distributions for each of these sites is shown in Appendix B.
The distributions and ranges of the input parameters to the Monte Carlo simulations
(Appendix B) show large differences depending on whether national or site-specific
data are used. High quality measurements are often available for individual sites,
whilst at the national scale input data usually have to be derived from other sources,
such as regional soil maps, statistics from experimental data sets or expert
judgement. For example, national estimates of soil mineral weathering rate are based
on the Skokloster classification (Nilsson and Grennfelt, 1998) using national soils
databases, whereas site-specific values may be derived from geochemical
measurements or modelling techniques applied to the soil present at the site (for
example, Langan et. al., 1996). In addition, national critical load calculations use
single default values for nitrogen and base cation uptake by coniferous plantation
forestry. The values are derived from measurements at a number of sites across the
country and the mean value applied to all coniferous forestry, irrespective of tree
species. For individual sites, information from harvested trees can be used (for
example Reynolds et. al., 1998) to give a more accurate estimate of nutrient removal.
Local knowledge of soil may be used to give appropriate ranges for the gibbsite



Uncertainty in Critical Load Assessment Models106

equilibrium constant at the site level, compared to national estimates that use default
values based on generalised soil characteristics.

Liphook and Aber both have a large amount of site-specific data. The input
parameters differ significantly for Liphook, but less so for Aber. Input values for the
Thetford site differ only for weathering rate. The effects these differences have on
exceedance are discussed in the next section.

Uncertainty ranges for all sites differ for most input parameters, depending on
whether national or site-specific knowledge is used. It would be expected that the
uncertainty ranges for input parameters for the site-specific analysis should be
narrower than those for the national analysis, as we may have better knowledge
based on detailed site measurements in space and time. In general, site-specific
uncertainty ranges are narrower.

4.2 Results
Table 4.2.1 below summarises the results of the uncertainty analysis for the critical
load exceedance calculations for each site, based on national (N) and site-specific
(SS) data.  These are compared with the deterministic exceedance values.

Table 4.2.1: Comparison of the deterministic critical load exceedance values
and results of the uncertainty analysis for Liphook, Thetford and Aber

Uncertainty analysis
Percentiles

Site Deterministic
value Mean Standard

deviation
Prob.
of
excee
-
dance

5th 50th

(median
)

95th

Liphook
N

2,095 2,177 811 100% 1,009 2,106 3,597

Liphook
SS

-15 210 459 68% -558 217 949

Thetfor
d
N

-7,323 -7,089 3,656 0.3% -
14,019

-6,748 -1,913

Thetfor
d SS

-8,061 -8,408 4,138 2% -
16,210

-8,023 -2,662

Aber
N

935 1,052 748 93% -105 1,006 2,354

Aber
SS

1,335 1,295 618 96% 213 1,396 2,237

(i) Values are in eq ha-1 yr-1.
(ii) N = based on national data; SS = based on site-specific data

4.2.1 Deterministic results

Table 4.2.1 shows the deterministic results of critical load exceedance using national
and site-specific input data. For Liphook there is a large difference between
predictions, because the measured deposition is much lower for all acidifying species
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than the national data suggest. For Thetford, there are no site-specific deposition
data, and the exceedance differs only slightly because of a small difference in
weathering rate. For Aber, measured S deposition is much higher than the national
estimate, run-off is considerably less and weathering is somewhat less (Appendix B).
Exceedance is therefore greater with the site-specific parameters for this site.

The deterministic results for the Liphook site show that different conclusions would
be reached about critical load exceedance, depending on whether national or site-
specific data were being used. The national data predict that the site is highly
exceeded and the site-specific data predict no exceedance. The Aber analyses also
gave quite different deterministic results, although both predicted the site was
exceeded regardless of whether site-specific or national data were being used. The
results of the Thetford analyses showed good agreement, predicting that the site was
not exceeded irrespective of the type of data. This is because the input data sets
differ only in weathering rate.

4.2.2 Monte Carlo results

Table 4.2.1 also shows the means, standard deviations, and 5th, 50th and 95th

percentiles of the exceedance distributions. For Liphook, the mean for the site-
specific analysis (210 eq ha-1 yr-1) lies outside the 95 per cent confidence intervals for
the national analysis, indicating that the analyses predict very different results. For
Thetford and Aber, the mean values for the site-specific analysis (-8,408 eq ha-1 yr-1

and 1,295 eq ha-1 yr-1 respectively) are in good agreement with the national analysis
(-7,089 eq ha-1 yr-1 and 1,052 eq ha-1 yr-1 respectively) and both sets of analyses lie
well within one standard deviation of each other. The site-specific analysis for
Thetford predicts a slightly higher uncertainty than the national analysis, which is
probably due to the higher weathering rate used in the site-specific analysis. In
general, the means of the Monte Carlo analysis correspond with the deterministic
results apart from the Liphook site-specific result, for which the deterministic value
predicts non-exceedance and the mean of the Monte Carlo analysis suggests that
the site is exceeded.

The probability distributions of the predicted exceedance at each site were used to
calculate the probability that the rate of deposition was lower than the critical load
(probability of exceedance statistics in Table 4.2.1). The results of the site-specific
and national analyses were very different for the Liphook site, where the national
analysis predicted a 100 per cent probability of exceedance; that is, certain risk of
acidification. However, the site-specific analysis predicted only a 68 per cent
probability that the site is exceeded, indicating less confidence in the exceedance
prediction. The national analysis for Aber showed a high level of confidence that the
site is exceeded and the site-specific study also predicted a very high level of
confidence. For Thetford, the probability of exceedance is less than five per cent for
both sets of analyses, suggesting with a high degree of confidence that the critical
load is not exceeded at this site.

At Liphook, the national 5th percentile exceedance value is above zero, suggesting it
is likely that the site is exceeded. The site-specific study shows the 5th percentile is
below zero (and the 50th percentile above zero), indicating greater uncertainty about
exceedance. Adopting a highly precautionary approach based on whether the 95th

percentile of the distribution is greater than zero results in both analyses concluding
that the site is exceeded. For Aber, the national analysis predicts a 50th percentile
value above zero and a 5th percentile below zero, so that a policy maker may once
again opt to consider that the critical load is exceeded or that further study is
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required. However, for the site-specific analysis the 5th percentile is above zero,
indicating that the site is exceeded. For Thetford, the 95th percentile values are below
zero for both analyses, indicating that it is likely that the site is not exceeded.

At Liphook, the 95th percentile of the site-specific analysis (949 eq ha-1 yr-1) is smaller
than the 5th percentile of the national analysis (1,009 eq ha-1 yr-1), so the two
distributions hardly overlap, with the national analysis predicting significantly higher
exceedance than the site-specific analysis. This demonstrates how differences in the
input data manifest themselves in the variability of the exceedance predictions. For
Thetford and Aber, the 5th, 50th and 95th percentiles are similar for both distributions,
indicating significant overlap between probability distributions, although for Thetford
the national data predict higher exceedances whereas for Aber, it is the site-specific
data which does so.  The distributions for Thetford show that even a site with a large
deterministic negative exceedance can have a small tail of exceeded values. No
general relationship between national and site-specific critical load exceedance
uncertainty probability distributions can be established from the analysis of these
three sites.

4.3 Suitability of criteria, models and data
National critical load models are based on steady state assumptions, meaning they
set critical loads to protect systems that are in long-term steady state conditions.  As
such, it may not be possible to validate critical loads in the field, or to find evidence of
harmful effects (for example, in areas where critical loads are predicted to be
exceeded), unless the system is in steady state.  National maps are based on (a)
national scale database, and (b) default values for some parameters.  The issue of
data limitations and resolution is also addressed below (Section 4.3.1).

The critical load models are based on a limited number of chemical criteria, for
example the critical calcium to aluminium ratio in soil solution.  These criteria may be
set to protect specific habitats or species and may not be appropriate for the
protection of other habitats or species for which sites are designated.  Indeed, criteria
and models may not exist to calculate critical loads to protect all features
(habitats/species) for designated sites.  In addition, the criteria may have been
derived from non-UK data, for example the acid neutralising capacity (ANC)
threshold used for UK surface waters is based on Norwegian data.  Ideally, criteria
should be based on UK studies.  The following points deal with the different criteria
used in the UK:

Weathering rates

Soil associations may contain several soil series and each may have different
physical properties. Acidity critical loads for non-peat soils are based on the
properties of the dominant series within each soil association, and the critical loads
are mapped according to the dominant soil association in each 1x1 km grid square
(Loveland, 1991; Hornung et al., 1995).  These critical loads are applied to non-
woodland terrestrial habitats in the UK and the critical load is set to protect the soil
upon which the habitat occurs, that is, it is not habitat-specific.

For the national maps, the assignment of soil types to critical loads class (five class
ranges) was performed by the soil survey organisations for England and Wales,
Scotland and Northern Ireland.  There are unquantified uncertainties in the
assignment of critical loads class to the soil types.
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A number of methods can be used to determine weathering rates.  There are
uncertainties associated with the different methods and they can give different
results.  The weathering rate is not an easy parameter to measure and hence data
are rarely available at site-level.

Critical pH

The criteria recommended (Calver et al., 2004) and applied in the calculation of
acidity critical loads for peat soils in the UK is a critical hydrogen ion concentration
(equivalent to pH 4.4) in soil solution.  The critical value of pH 4.4 is precautionary
and based on studies of the effects of acidification on Calluna vulgaris and on the
abundance of bryophytes on peat soils.  This value was considered inappropriate for
lowland/arable fen peats that are less sensitive to acidification and critical loads for
these areas were instead set to 4.0 keq ha-1 yr-1.  Different critical thresholds may
also be needed for specific ecologically important biotic populations.

This method could be applied at an individual site level if information on run-off
(precipitation surplus) was also known.

Ratio of calcium to aluminium in soil solution

Molar ratios of base cations or calcium to aluminium in soil solution, set to protect the
fine roots of trees, are commonly used criteria within the acidity SMB equation (UBA,
2004).  In the UK, a calcium to aluminium ratio equal to one is used in the calculation
of acidity critical loads for coniferous and broadleaved woodland habitats (managed
and unmanaged).  Different values may be more appropriate for individual species or
woodland types, but we lack good UK data upon which to base alternative values.

The SMB equation can be applied at the site level, but lots of measurements are
required (such as weathering rates, calcium deposition, calcium uptake, run-off) for
the input data.  National scale data could be used, but this would require an
assessment of the site characteristics to determine how applicable national map data
were for the site in question.

Acid neutralising capacity (ANC)

The ANC criterion used in the UK is set to protect the populations of brown trout and
this may not be appropriate for the protection of other species.  This criterion is
applied within the Steady State Water Chemistry (SSWC, Henriksen) and First-Order
Acidity Balance (FAB) models.  Both models require surface water chemistry data
and FAB additionally requires catchment-specific input data.  This means that the
national maps are based on site-specific data (for 1,722 sites).  Whilst this is a
strength of the approach, critical load values cannot simply be extrapolated and
applied to other sites.

Acceptable nitrogen leaching

The mass balance equation for the calculation of nutrient nitrogen critical loads for
managed woodlands uses an acceptable nitrogen leaching value as the criterion.  At
present, in the UK a single value is applied to all managed coniferous woodland, and
another value to all managed broadleaved woodland, both based on data published
in the literature (Emmett et al., 1993; Emmett & Reynolds, 1996).  Other values may
be more appropriate for different woodland types in different locations and conditions
(such as soil type).
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Changes in ecosystem structure/function

The ranges of empirical critical loads of nutrient nitrogen are based on observed
changes in the structure or function of ecosystems as determined from experimental
data, field observations and/or dynamic ecosystem models.  The ranges were the
result of a UNECE workshop attended by experts in the nitrogen field (Achermann
and Bobbink, 2002).  To allow for the application of these critical loads across
Europe, ranges were set for habitat classes of the European Nature Information
System (EUNIS); therefore, the relationship between these classes and UK habitat
types is needed to apply the method in the UK (Hall et al., 2003a; NBN Habitats
Dictionary).  Critical load values will not necessarily protect all habitats/species within
each EUNIS class, as the values are generally based on data for specific habitats or
species and data may not be available for all other habitats/species, which may also
respond differently to nitrogen loads.

4.3.1 Data limitation/resolution issues

There are two main data issues: resolution and paucity of data. Both contribute to
uncertainties in the calculation of critical loads.

Data resolution

Many of the data sets used in the national calculations and mapping of critical loads
are at 1x1 km and 5x5 km square resolution.  As has previously been mentioned, the
soils data are based on the dominant soil association in each 1x1 km grid square and
other sub-dominant soils may have different properties. These soils data are used to:

• Determine the dominant soil type (association or map unit) in each 1x1 km
square and the selection of the appropriate critical loads calculation method:
mineral, organo-mineral soils or peat soils.

• Define the calcium weathering rate inputs to the SMB equation; values are based
on a proportion (by soil association) of the base cation weathering rate.

• Define areas of “calcium-rich” and “calcium-poor” soils for the application of
different calcium uptake rates in the SMB equation for broadleaved woodland.

• Define the nitrogen immobilisation and denitrification values (set by soil
association) required for the calculation of nitrogen critical loads (nutrient nitrogen
for managed woodlands, minimum critical load of nitrogen)

The SSMB equation and the calculation of acidity critical loads for peat soils both
require long-term (30 year mean) run-off data; 1x1 km square data based on 30-year
rainfall data sets are used. The SSMB equation also requires total (marine plus non-
marine) calcium deposition data; the national data are on a 5x5 km grid and include
separate values assuming acid grassland or woodland cover in each square.
However, deposition values may vary across the 5x5 km grid and there are
uncertainties in the measurements and modelling of calcium deposition (see Section
2.1.6: Draajers et al., 1997).

Paucity of data

Some input values to the critical load calculations are based on only a few
measurements, due to a lack of data nationally.  These include:
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• Uptake values, such as the removal of base cations, calcium and nitrogen due to
harvesting of trees.  Data are currently based on UK sites from the ICP Level II
Monitoring Survey (http://www.icp-forests.org) number for N, and number for BC
and Ca which also have values for Ca-rich and Ca-poor sites.

• Uptake values (base cations) for other habitat types: values are generally taken
from the literature and may be based on a single site or few sites in the UK.

• Values for removal of nitrogen by fire (applicable to heathland habitats) are also
based on data for a single site.

• Acceptable nitrogen leaching for woodland habitats: values based on literature.

For all of these parameters, the values required may vary by site due to local
conditions (such as soils, climate), but the impacts of any uncertainties introduced by
using such default values from the literature or survey have not been quantified.
However, some assumptions about the data distributions can be made, as used in
the national uncertainty analysis (Section 3).

4.4 Conclusions

The analysis, based on example sites, illustrates how the application of national data
on a site-specific scale should be treated with care, and shows that:

• Input default values and uncertainty ranges for a research site may not
correspond to data derived for national purposes.

• The exceedance probability distributions based on site-specific and national
data can vary significantly from one site to another. Liphook varied
significantly, although Aber gave good agreement. Thetford also gave good
agreement, although more estimates of site-specific data are required to
make better judgements for this site.

• The user needs to be aware of the potential for error in both approaches,
especially where national data have to be used because the site-specific data
do not exist or are too costly to collect.

Users of national critical loads data and maps need to be aware of the following
limitations:

• The critical chemical criteria on which the critical load calculations are based are
only relevant for specific habitats or species.

• Models and/or criteria may not exist for the habitats/species of interest and it may
be inappropriate to use data for other similar habitats or species.

• The resolution of data used to derive national maps and the paucity of data on
which some model parameters are based also have limitations.
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5 Uncertainties at the regional
scale

Summary

• The TRACK model was used to generate predictions of S and N deposition,
and these predictions were compared with measured rates derived from wet
deposition and air concentration measurements. Agreement was reasonable,
but model estimates could be improved by a bias adjustment derived from
regression analysis.

• The regression analysis provides a measure of the uncertainty in the
modelled deposition rates.

• Monte Carlo analysis of input parameter uncertainty showed it contributed a
substantial amount to the uncertainty in deposition model predictions.
However, input parameter uncertainty does not explain all the model errors.

• Uncertainty in critical load exceedance was generated for each of the 2,588
one km squares in South East England containing coniferous forest, using
probability distributions of critical loads already generated in this study, and a
Monte Carlo simulation of TRACK model results.

• Illustrative maps are provided of various metrics of critical load exceedance.
Using the median exceedance increases the number of squares exceeded
compared to a deterministic estimate, and using the 95th percentile increases
it substantially.

• The results depended strongly on which site was used to generate the critical
load probability distributions – Liphook, Aber or Thetford.

• Using a bivariate normal distribution for S and N critical loads and a bivariate
Student’s t distribution for deposition gave similar results to direct sampling of
the distributions and is therefore recommended for assessment purposes.

• However, in view of the sensitivity of the results to the probability distribution
of critical loads used, it is recommended that these functions should be
assigned to receptors on a case-by-case basis.

5.1 Introduction
In the calculation of exceedance both the deposition and the critical load estimates
are uncertain, because they depend on uncertain estimates of model input
parameters. Furthermore, the models used to calculate deposition are also inherently
uncertain because of the assumptions made in their derivation and implementation.

The approach taken here was to use Monte Carlo simulations to develop probability
distributions of critical loads and deposition rates, taking account of assumed
probability distributions for the model inputs. In addition, predictions of sulphur and
nitrogen deposition are compared with available measurements in order to estimate
the inherent uncertainty in the deposition model. Maps were then prepared based on
the following approaches:

• deterministic calculation of the difference between the deposition prediction
and the critical load estimates;
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• deterministic calculation of the difference between the deposition prediction,
adjusted for bias by regression analysis and the critical load estimates;

• calculation of the probability distributions of critical load exceedance by
resampling from the joint probability distribution of acid deposition predictions
(sulphur and nitrogen) and the joint probability distribution of critical loads
(CLmaxS, CLminN ).

• fitting of multivariate normal distribution functions to acid deposition model
outputs and critical load estimates and resampling from the fitted distributions.

The spatial domain of the maps was limited to the South East of England, in order to
limit the amount of data generated and to facilitate data handling.

The probability distributions for the critical loads used in this assessment were
developed in Subtask 1.3 (Section 3). The methods used are described in Sections 2
and 3 and are not repeated here.

5.2 Deposition modelling
5.2.1 Model

Netcen’s long range acid deposition model, TRACK Version 1.7e, was used to
predict annual wet and dry deposition of sulphur, oxidised and reduced nitrogen at
wet deposition monitoring sites throughout the UK, and at 100, 20 x 20 km square
areas covering the South East of England.

The technical specification for the TRACK model is described in a refereed paper by
Lee et al. (2000). More recently, the predictions of deposition rates and ambient
concentrations made by Version 1.7 have been compared with measured values by
Abbott et al. (2003).

Version 1.7e is set up to facilitate Monte Carlo simulation, with input values selected
from feasible ranges. Version 1.7e differs slightly from Version 1.7 used in our earlier
work: it includes the wind direction sector averaging algorithm described in Appendix
8 of the annual audit report prepared for the Environment Agency.

Input data for the modelling runs will be found in Appendix C. Table C1 summarises
the input parameters used in the model runs. The baseline model run was based on
these parameter values. Table C2 summarises the range of input values used for
Monte Carlo simulation. Values of each parameter were taken at random from the
range, assuming a uniform distribution. Three hundred model runs were carried out.
The 2002 50x50 km square EMEP emissions inventory for sulphur dioxide, oxides of
nitrogen and ammonia provided the emissions inputs for most of the model domain.
UK emissions estimates, taken from the 2003 UK National Atmospheric Emissions
Inventory (NAEI), were aggregated onto a 10 km x 10 km grid for the UK.  Local
deposition of ammonia was calculated from the 2003 NAEI 1 km x 1 km inventory.

Monitoring data used in the assessment were taken from Management and Operation
of the UK Acid Deposition Monitoring Network: Data Summary for 2003. The data are
summarised in Table C3. The data were supplemented by additional data for ammonia
and ammonium for 2002 from the UK National Ammonia Monitoring Network for sites
included in Table C3.
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5.2.2 Comparison of modelled and measured deposition rates

5.2.2.1 Wet deposition of sulphur

The annual wet deposition of sulphur was calculated from the monitoring data as the
product of the precipitation-weighted mean sulphur concentration and the annual
precipitation.

A background contribution to wet sulphur deposition was added to the modelled wet
deposition. The background contribution was calculated as the collected rainfall
multiplied by 10 µeq l-1, based on the analysis of data from remote sites carried out
by Irwin et al.(1997).

Figure 5.2.1 shows the measured wet deposition plotted against the modelled wet
deposition.

Figure 5.2.1: Comparison of measured and modelled wet sulphur deposition

5.2.2.2 Total deposition of sulphur

The total deposition of sulphur is made up of both wet and dry deposition. Dry
deposition of sulphur dioxide is measured continuously at only two sites in the UK:
Auchenforth Moss and Sutton Bonington, but wet deposition measurements are not
made at these sites, so an estimate of total deposition is not possible. Dry deposition
rates for sulphate particulates and sulphuric acid are not routinely made. The rate of
dry deposition can only be inferred based on measurements of sulphur dioxide and
sulphate concentrations and an assumed dry deposition velocity. A dry deposition
velocity of 13.6 mm s-1 for sulphur dioxide was used in the assessment,
corresponding to the upper bound of measurements made at Sutton Bonington. A dry
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deposition velocity of 0.5 mm s-1 was used for sulphate, corresponding to particulate
deposition.

Model predictions of sulphur dioxide and sulphate concentrations are reviewed
elsewhere in this project, in the annual audit report prepared for the Environment
Agency. Figure 5.2.1 shows the total sulphur deposition calculated from the
measurements plotted against the modelled deposition and the modelled one-to-one
line. A least squares analysis was performed on the data, assuming that the error
was proportional to the modelled deposition. The slope of the least squares line
through the origin was 0.72. Figure 5.2.2 shows the least squares line and the upper
and lower bounds of the 90th percentile prediction interval (the 5th and 95th

percentiles). The prediction interval is the interval that will contain the measured
values with the specified degree of confidence. The prediction interval was calculated
assuming Student’s t distribution with five degrees of freedom. This distribution was
used because of the limited number of data points. It approximates to a normal
distribution at over 30 degrees of freedom.

Figure 5.2.2: Comparison of modelled and measured total sulphur deposition

Table 5.2.1 shows the results of the Monte Carlo simulation. It shows the results of
the baseline model run, the estimated sulphur deposition based on measurements,
the 5th and 95th percentiles and mean of the modelled estimates from the Monte
Carlo simulation. In several cases, the measurement-based estimate is outside the
5th and 95th percentile confidence limits. It may be concluded that there are sources
of uncertainty in the model predictions other than input parameter uncertainty.

Table 5.2.1: Sulphur deposition estimates from TRACK Monte Carlo simulation

Sulphur deposition estimates, kg S ha-1 y-1Site
Baseline
modelled

Measuremen
t-based
estimate

5th

percentile of
modelled
estimates

95th

percentile of
modelled
estimates

Mean of
modelled
estimates

Yarner Wood 7.7 4.9 7.1 8.2 7.8
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Stoke Ferry 10.5 8.4 9.2 13.7 11.7
High Muffles 11.0 11.5 9.7 15.8 12.9
Lough Navar 3.5 2.6 3.3 3.6 3.4
Eskdalemuir 7.7 5.4 6.8 8.3 7.7
Strathvaich 4.1 1.8 3.4 4.3 3.9

5.2.2.3 Wet deposition of nitrogen

The annual wet deposition of nitrogen was calculated from the monitoring data as the
product of the precipitation-weighted mean nitrogen concentration (oxidised plus
reduced) and the annual precipitation. Figure 5.2.3 shows the measured wet
deposition plotted against the modelled wet deposition.

Figure 5.2.3: Comparison of modelled and measured wet deposition of nitrogen

5.2.2.4 Total deposition of nitrogen

The total deposition of nitrogen is made up of both wet and dry deposition of oxidised
and reduced nitrogen species. Dry deposition of nitrogen species is not measured
continuously in the UK. The rate of dry deposition can only be inferred based on
measurements of nitrogen dioxide, particulate nitrate, nitric acid, ammonia and
ammonium concentrations and assumed dry deposition velocities. The assumed dry
deposition velocities were as follows:

Nitrogen dioxide 1.0 mm s-1

Particulate nitrate 0.5 mm s-1
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Most of the ammonia emitted in the UK is emitted near ground level from various
agricultural sources. A considerable part of the ammonia emitted is rapidly deposited
to the ground. The TRACK model is a long-range model that considers the net
ammonia emission (total emission less locally deposited emission). The local
deposition was estimated from the NAEI 1 km x 1 km ammonia emission inventory,
assuming the ammonia is released 1 m above ground as:

net
cba

aa
l E

RRR
RR

D
)(

)(

1

1

++
−

=

where Ra is the total resistance in  the atmospheric surface stress layer;
Ra1 is the resistance in the lowest one metre of the surface stress layer;
Rb is the laminar sub layer resistance;
Rc is the surface resistance;
Enet is the net ammonia emission per unit area.

For most surface types, for neutral atmospheric conditions D is approximately 0.44
Enet. The estimated local deposition was added to the long-range deposition modelled
using TRACK.

Figure 5.2.4 shows the total nitrogen deposition calculated from the measurements
plotted against the modelled deposition.  Figure 5.2.4 also shows the modelled one-
to-one line. A least squares analysis was performed on the data assuming that the
error was proportional to the modelled deposition. The slope of the least squares line
through the origin was 1.05. Figure 5.2.4 shows the least squares line and the upper
and lower bounds of the 90th percentile prediction interval. The prediction interval
was calculated assuming Student’s t distribution with five degrees of freedom.

Figure 5.2.4: Comparison of modelled and measured total nitrogen deposition
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Table 5.2.2 shows the results of the Monte Carlo simulation at reference sites. It
shows the results of the baseline model run, the estimated nitrogen deposition based
on measurements, the 5th and 95th percentiles and mean of the modelled estimates
from the Monte Carlo simulation. In several cases, the measurement-based estimate
is outside the 90th percentile range of the modelled estimates. It may be concluded
that that there are sources of uncertainty in the model predictions other than input
parameter uncertainty.

Table 5.2.2: Nitrogen deposition estimates from TRACK Monte Carlo simulation

Nitrogen deposition estimates, kg N ha-1 y-1Site
Baseline
modelled

Measuremen
t-based
estimate

5th

percentile of
modelled
estimates

95th

percentile of
modelled
estimates

Mean of
modelled
estimates

Yarner Wood 14.1 8.4 11.4 17.7 14.9
Stoke Ferry 13.7 19.5 12.0 21.9 17.0
High Muffles 11.7 13.1 10.1 17.5 13.8
Lough Navar 6.4 5.5 5.3 7.2 6.2
Eskdalemuir 7.1 10.0 5.0 7.9 6.4
Strathvaich 3.1 2.8 2.3 3.2 2.8

5.3 Critical load exceedances

5.3.1 Introduction

The predicted rates of sulphur and nitrogen deposition were compared with critical
loads for coniferous forest for the South East of England provided by CEH. The
critical loads data used for this part of the report are not based on CEH’s most recent
evaluations of the critical loads: the values used here are intended to demonstrate
the methodology only. The critical load data contains values of the critical loads for
each one km square where there is coniferous forest present. These include:

• CLmaxS, the critical load for sulphur deposition;
• CLminN, the minimum (threshold) critical load for nitrogen.

The exceedance of the critical load was calculated from the sulphur deposition rate,
S and the nitrogen deposition rate, N.

For N < CLminN : E = S - CLmaxS

For CLminN  < N < CLmaxS + CLminN : E = S + N - CLmaxS - CLminN

For N > CLmaxS + CLminN: E = S

CEH and Skeffington Consultants carried out a Monte Carlo analysis for the critical
loads at three coniferous forest sites (Liphook, Aber and Thetford) as part of Subtask
1.3 (See Sections 2, 3 and 4). The analysis provided 5,000 paired estimates of the
critical loads for each of the three sites. These three sites were used to estimate the
uncertainty at other sites in the preparation of the maps.
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5.3.2 Baseline estimates of exceedance

Rates of deposition calculated by the baseline model run were compared with the
critical load estimates to provide deterministic exceedance estimates at each one km
square with coniferous forest in the South East of England. Figure 5.3.1 shows a
map of the predicted exceedance. There are 235 out of 2,588 one km square areas
with coniferous forest where the predicted deposition rate exceeds the critical load.

Figure 5.3.1: Predicted exceedance of critical loads for coniferous forest,
baseline model run

The baseline model predictions were then adjusted for model bias on the basis of the
regression analysis shown in Figure 5.2.2 and Figure 5.2.4. Modelled rates of sulphur
deposition were multiplied by 0.72: modelled rates of nitrogen deposition were
multiplied by 1.05. The resulting predictions of critical load exceedance are shown in
Figure 5.3.2. There are 59 out of 2,588 one km square areas with coniferous forest
where the predicted deposition rate exceeds the critical load.
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Figure 5.3.2: Predicted exceedance of critical loads for coniferous forest,
baseline model run adjusted for deposition model bias

5.3.3 Monte Carlo simulation – statistical parameterisation

5.3.3.1 Uncertainty in critical loads

Estimates of uncertainty in the exceedance of critical loads in coniferous forests in
South East England were then prepared to contrast with the deterministic estimates
presented in Section 5.3.2. To achieve this, a Monte Carlo simulation to predict
exceedance was carried out assuming that the error in the critical loads at each one
km square has a bivariate normal distribution. The coefficients of variation (standard
deviation divided by mean) for CLmaxS and CLminN and the correlation coefficient
were determined from the analysis of the Monte Carlo simulations for Liphook, Aber
and Thetford carried out by CEH and Skeffington Consultants.

 lists the coefficients of variation and correlation coefficients determined from the
Skeffington Consultants’ simulations. Separate simulations were carried out
assuming that all the one km squares had “Liphook type”, “Aber type” or “Thetford
type” probability distributions described by the parameters in Table 5.3.1. The
deposition predictions were based on the baseline model run adjusted for model
bias. One hundred model runs were used in the simulation.
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Table 5.3.1: Coefficients of variation of critical loads
Coefficient of variation Correlation

coefficient
Site

CLmaxS CLminN
Liphook 0.77 0.11 -0.25
Aber 0.26 0.05 -0.15
Thetford 0.35 0.19 -0.03

Table 5.3.2 shows the predicted numbers of one km squares with coniferous forests
where the predicted deposition exceeds the critical loads. The numbers shown are
for the median and 95th percentile predictions of exceedance, that is, for each square
the 50th and 95th highest predictions of the exceedance in each square were taken.

Table 5.3.2: Number of one km squares where the specified percentile of
predicted exceedances exceeds zero

Assumed probability
distribution type

Median 95th percentile

Liphook 74 2346
Aber 64 540
Thetford 69 972

The number of one km squares where the median estimate of the exceedance was
more than zero was similar to the estimate based on the bias-adjusted baseline
predictions. The number of one km squares where the 95th percentile estimate of the
exceedance was more than zero was much greater. The calculated numbers of one
km squares where the 95th percentile exceedance is more than zero depends to a
great deal on the assumed distribution of errors in the critical load estimates.

The number of one km squares where the 95th percentile of calculated exceedance
values exceeds zero is not the same statistic as the 95th percentile of estimates of
the number of exceedances. Table 5.3.3 shows the median and 95th percentile
estimates of the number of one km squares where the predicted deposition exceeds
the critical load. Table 5.3.2 was calculated as follows:

For each site, calculate the 95th percentile or median of the predicted
exceedances, then count the number of sites where the specified percentile
exceeds zero.

Table 5.3.3. was calculated as follows:

For each iteration of the Monte Carlo simulation, count the number of sites
where the predicted exceedance exceeds zero, then calculate the 95th

percentile or median of the number of sites over all the iterations.

In the derivation of Table 5.3.3, it has been assumed that the critical loads at each
site have been estimated independently; that is, it has been assumed that there is no
correlation between the critical load estimates at different sites. (It is not clear to what
extent the estimates of critical loads are correlated between sites.)
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Table 5.3.3: Median and 95th percentile estimates of the number of one km
squares exceeding the critical load

Assumed probability
distribution type

Median 95th percentile

Liphook 549 584
Aber 147 163
Thetford 236 257

The differences between the results of the two calculations are clear and emphasise
the difference between the two statistics. Table 5.3.2 would be useful in assessing
the extent of exceedance at individual sites.

Table 5.3.3 would be useful in assessing the extent of exceedance over the whole
region. The 95th percentile shown in Table 5.3.3 is slightly greater than the median.
Statistical theory suggests that 95th percentile of the estimates would converge
towards the median as the number of sites increases.

Figure 5.3.3 shows the 95th percentiles of exceedances at each one km square,
assuming a Thetford type distribution of critical load errors and the baseline
predictions of deposition adjusted for model bias.

We have considered whether the probability of exceedance of the critical load is a
more robust statistic. The calculated probability appears to be less sensitive to the
choice of the probability distribution of the critical loads. Figure 5.3.4 shows the
probability of exceedance at each of the one km squares, based on the Aber and
Thetford probability distributions plotted against the probability of exceedance
calculated using the Liphook probability distribution. However, comparison of the
exceedance probability maps for Thetford type and Liphook type distributions
highlights the differences resulting from the choice of distribution.

In conclusion, the choice of the assumed probability distribution for the critical loads
has a significant effect on the apparent uncertainty in exceedance prediction.
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Figure 5.3.3: 95th percentile of predicted exceedances assuming Thetford type
distribution of critical loads and baseline predictions of deposition adjusted for
model bias

Figure 5.3.5 and Figure 5.3.6 show the probability of exceedance assuming Thetford
and Liphook type distribution of critical loads and baseline predictions of deposition
adjusted for model bias
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Figure 5.3.4: Comparison of the probability of exceedance at one km squares
for different assumed probability distributions of the critical loads

Figure 5.3.5: Probability of exceedance assuming Thetford type distribution of
critical loads and baseline predictions of deposition adjusted for model bias
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Figure 5.3.6: Probability of exceedance assuming Liphook type distribution of
critical loads and baseline predictions of deposition adjusted for model bias

5.3.3.2 Uncertainty in Deposition Predictions

A Monte Carlo simulation to predict exceedance was carried out, assuming that the
error in the predicted deposition has Student’s t distribution with five degrees of
freedom, with the coefficient of variation derived from the regression analysis against
measured values (Figure 5.2.2 and Figure 5.2.4). The model bias adjustment and
coefficients of variation for sulphur and nitrogen deposition are shown in Table 5.3.4.
Examination of the data suggested a weak correlation between the errors in the
sulphur and nitrogen deposition predictions. It was assumed that they were
independent for this analysis, and fixed values for the critical loads for each one km
square were used.

Table 5.3.4: Deposition uncertainty distribution parameters

Sulphur Nitrogen
Model bias
adjustment

0.72 1.05

Standard deviation 0.198 0.323

The median prediction of exceedance was greater than zero for 70 of the 2,588 one
km squares. The 95th percentile of predicted exceedances was greater than zero for
678 of the one km squares. These values may be compared with those in Table
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5.2.4. It was concluded that the uncertainties in the critical loads and the
uncertainties in the deposition contribute approximately equally to the overall
uncertainty in exceedance estimates.

Figure 5.3.7: Errors in measured/modelled sulphur and nitrogen deposition

A separate simulation was carried out assuming that the errors in the nitrogen
deposition estimates were correlated with the errors in the sulphur deposition
estimates, with a correlation coefficient of 0.3. The median prediction of exceedance
was greater than zero for 77 of the 2,588 one km squares. The 95th percentile of
predicted exceedances was greater than zero for 744 of the one km squares. It was
concluded that the correlation results in a relatively small increase in the predicted
numbers of exceedances. It was therefore assumed that the errors were independent
for the remaining simulations.

5.3.3.3 Combined uncertainties from deposition estimates and critical
load estimates

A Monte Carlo simulation was carried out assuming that the critical loads had a
bivariate normal distribution (5.3.3.1) and the deposition estimates had Student’s t
distribution (5.3.3.2). Table 5.3.5 shows the predicted numbers of one km squares
where the median and 95th percentile exceedance predictions were greater than
zero. Table.5.3.6 shows the median and 95th percentile estimates of the numbers of
squares exceeding the critical loads.
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Table 5.3.5: Number of one km squares where the specified percentile of
predicted exceedances exceeds zero - combined uncertainties

Assumed probability distribution
type Median 95th percentile

Single value 70 678
Liphook 105 2,338
Aber 86 955
Thetford 87 1,240

Table 5.3.6: Median and 95th percentile estimates of the number of one km
squares exceeding the critical load - combined uncertainties

Assumed probability distribution
type Median 95th percentile

Liphook 607 634
Aber 257 277
Thetford 329 358

Comparing Table 5.3.2 with Table 5.3.5 and

Table 5.3.3 with Table 5.3.6 confirms that consideration of the uncertainties in both
the critical loads and the deposition estimates increases the uncertainty in the
estimated exceedance.

Figure 5.3.8 shows the predicted 95th percentile of exceedance estimates at each
one km square with coniferous forest (Thetford distribution).
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Figure 5.3.8: Predicted 95th percentile of exceedance estimates at each one km
square with coniferous forest (Thetford).

5.3.4 Monte Carlo simulation – direct sampling

5.3.4.1 Uncertainty in critical loads

A simulation was carried out to compare the baseline deposition estimates, adjusted
for model bias, with the critical loads at each one km square. The critical load values
for each square were assumed to have Liphook type, Aber type or Thetford type
probability distributions. Paired estimates of the critical loads CLmaxS and CLminN
were taken at random from the probability distributions provided by Skeffington
Consultants and CEH and normalised by division by the mean value.

Thus for each one km site (i):

Liphookmean

Liphookk
iik CL
CL

CLCL
,

,
, =

where k is the iteration number.

Table 5.3.7 shows the numbers of one km squares where the specified percentile of
predicted exceedances exceeds zero. Table 5.3.8 shows the median and 95th

percentile estimates of the number of one km squares exceeding the critical load.

Table 5.3.7: Number of one km squares where the specified percentile of
predicted exceedances exceeds zero

Assumed probability distribution
type

Median 95th percentile

Liphook 74 2,546
Aber 77 252
Thetford 85 767

Table 5.3.8: Median and 95th percentile estimates of the number of one km
squares exceeding the critical load

Assumed probability distribution
type Median 95th percentile

Liphook 585 615
Aber 101 113
Thetford 236 236

Comparing Table 5.3.2 with Table 5.3.7 and

Table 5.3.3 with Table 5.3.8 indicates that the use of the bivariate normal distribution
for critical loads provides an adequate description of the probability distributions for
the critical loads.

5.3.4.2 Uncertainty in the deposition
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A simulation was carried out to compare the baseline critical load estimates with the
modelled deposition estimates. Estimates of the deposition were taken from the
deposition model Monte Carlo simulation, adjusted for model bias. The deposition
model run outputs were correlated between receptor sites: a set of input parameters
that results in a high prediction in the deposition at a receptor is also likely to produce
a high estimate at an adjacent receptor. Sulphur and nitrogen deposition rates at
each site were also correlated. These features were retained in this simulation.
Predictions of the simulation are summarised as the ’single value’ probability
distribution type in the second line of Table 5.3.9 and Table 5.3.10.

The median of predicted exceedances is greater than zero in more of the one km
squares for the direct simulation than for the parameterised simulation in Section
5.3.3.  This is because median estimates of nitrogen and sulphur depositions
predicted by the TRACK Monte Carlo simulations of deposition are larger than the
baseline estimates.

5.3.4.3 Combined uncertainties from deposition estimates and critical
load estimates

Simulations were carried out using the results of the Monte Carlo simulations of both
deposition estimates (Section 5.3.4.2) and critical load estimates (Section 5.3.4.1).
Separate simulations were carried out for Liphook type, Aber type and Thetford type
critical load probability distributions.

Table 5.3.9 shows the predicted numbers of one km squares where the median and
95th percentile exceedance predictions were greater than zero. Table 5.3.10 shows
the median and 95th percentile estimates of the numbers of squares exceeding the
critical loads.

Table 5.3.9: Number of one km squares where the specified percentile of
predicted exceedances exceeds zero - combined uncertainties

Assumed probability distribution
type

Median 95th percentile

Single value 344 803
Liphook 397 2,543
Aber 373 890
Thetford 417 1,323

Table 5.3.10: Median and 95th percentile estimates of the number of one km
squares exceeding the critical Load - combined uncertainties

Assumed probability distribution
type Median 95th percentile

Single value 367 803
Liphook 766 1,032
Aber 411 781
Thetford 508 886
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5.4 Conclusions and recommendations
The TRACK model was used to predict sulphur and nitrogen deposition at monitoring
sites across the UK. Modelled estimates of sulphur and nitrogen deposition were
compared with estimates derived from measured rates of wet deposition and air
concentrations of deposited species. The following conclusions were drawn:

• The TRACK model provides reasonable estimates of the deposition rates for
sulphur and nitrogen when compared with estimates of deposition based on
measured values of wet deposition and air concentrations.

• The modelled estimates of deposition can be improved by small bias
adjustments based on regression analysis.

• The regression analysis provides a measure of the uncertainty in the
modelled deposition rates.

The uncertainty in deposition model estimates resulting from the uncertainty in model
inputs can be estimated by means of Monte Carlo simulation of model input
parameters. The 5-95th percentile range of model predictions was compared with the
estimates derived from measured data. It was concluded that the input parameter
uncertainty provides a substantial contribution to the overall uncertainty in deposition
model predictions. However, input parameter uncertainty does not explain all the
model errors.

Skeffington Consultants and CEH have used Monte Carlo simulation to determine
the uncertainty in critical load estimates, taking account of the uncertainty in the input
parameters to the critical load equations. The joint probability distribution of the
critical load for sulphur, CLmaxS, and the minimum critical load for nitrogen, CLminN,
was determined at three coniferous woodland sites: Liphook, Aber and Thetford.  The
uncertainty in critical load estimates is not small compared with the critical loads.

The results of the Monte Carlo simulation of critical loads were used in this study in
the further simulation of critical load exceedances, where the exceedance was
calculated as the difference between the modelled deposition and the critical load.
The critical load exceedance was calculated at each of the 2,588 one km squares in
the area of South East England selected for this feasibility study. The joint probability
distribution for the critical loads at each site was assumed to take one of three forms:

• single value for the critical loads for sulphur and nitrogen;
• bivariate normal distribution;
• direct sampling from the joint probability distribution developed from the

Monte Carlo simulation of critical loads.

The joint probability distributions were assumed to be Liphook type, Aber type or
Thetford type depending on the critical load data set used.

The joint probability distribution for the deposition rate at each site was also assumed
to take one of three forms:

• single values for sulphur and nitrogen deposition derived from the TRACK
model runs with the baseline input parameters;

• bivariate Student’s t distribution derived from the regression analysis of model
predictions and measurement estimates of sulphur and nitrogen deposition;
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• direct sampling from the TRACK Monte Carlo simulation of sulphur and
nitrogen deposition.

The following combinations of probability distributions were investigated:

• single-single
• single-bivariate
• bivariate-single
• bivariate-bivariate
• single-direct
• direct-single
• direct-direct

Four metrics were used to compare the model predictions. These were:

1. The number of one km square coniferous forest areas where the median of
the predicted exceedances was more than zero.

2. The number of one km square coniferous forest areas where the 95th

percentile of the predicted exceedances was more than zero.
3. The median of the estimates of the number of squares where the deposition

exceeds the critical load.
4. The 95th percentile of the estimates of the number of squares where the

deposition exceeds the critical load.

Metrics 1 and 2 provide a measure of the likelihood of exceedance for individual one
km squares. Metrics 3 and 4 provide a measure of the overall sensitivity of the region
to acid deposition.

The data set chosen to represent the critical load joint probability distribution did not
affect Metric 1 significantly. However, the choice of distribution had a substantial
effect on the other metrics. It was concluded that the probability distribution functions
should be assigned to receptors on a case-by-case basis.

The bivariate probability distribution used to represent the critical loads data set
produced similar results to direct sampling from the original distribution. It was
concluded that a bivariate normal distribution may be used to represent the joint
probability distribution of critical loads at receptor sites.

The use of single value estimates for the critical loads leads to a substantial
underestimation of Metric 3. It is essential to consider the joint probability function of
the critical loads when assessing the extent of exceedance of the critical loads over a
region.

Direct sampling from the TRACK model deposition probability distribution leads to
higher estimates of Metric 1 than the single value model predictions, or those using
the bivariate t-distribution based on the regression analysis. This situation arises
because the median of the TRACK model Monte Carlo simulation predictions of
deposition at most sites is larger than the baseline model output used for the
regression analysis. It is recommended that the bivariate t distribution based on the
regression analysis is used in critical load assessments, because it provides a direct
link to the observed values and takes account of the errors in the model predictions.
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In summary, the bivariate-bivariate combination of probability distributions is
recommended for assessment and mapping of critical load exceedance. It is
important that the joint probability distribution used to represent critical loads at each
receptor site should be representative of the soil conditions at that site. This may be
a difficult condition to fulfil, as the three known distributions (Liphook, Thetford and
Aber) give rather different results (see above), and other sites may produce other
distributions. There is indeed little basis at the moment for associating any square
without measurement data with a given distribution.
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6 Frameworks for the
Environment Agency’s
regulatory role

Summary

• This section describes the process for carrying out critical load, exceedance
and uncertainty assessments at the local (point, site), regional and national
scales, and illustrates these with flow charts.

• Uncertainties depend on whether site-specific or national data are used;
values differ between sites and habitat types, and values for a site are not
necessarily applicable regionally or nationally. Different approaches are
needed at each scale.

• Sensitivity analyses to determine the key input parameters that influence the
critical load and exceedance values, together with calculations of the
probability of exceedance, are the key tools for carrying out an assessment at
any scale.

• Uncertainties may be reduced at the point- or site-specific scale, if more site-
specific data for sensitive parameters (such as base cation and calcium
weathering rates and deposition) are collected.

• The points, sites or areas that have a very high or very low probability of
exceedance can be identified using the methods proposed. For those areas
where the probability of exceedance is uncertain, more information to improve
the estimates of the key input parameters is required.

6.1 Introduction
Critical loads are often represented as a dose-response function (Figure 6.1.1) and
defined as the deposition load below which significant harmful effects on specified
elements of the environment (such as soil, vegetation, water) do not occur according
to present knowledge (Nilsson and Grennfelt, 1988). Exceedance of critical loads is
defined as the amount of excess deposition above the critical load.

Sections 1 to 5 of this report describe the uncertainties in the calculation of critical
loads and their exceedances, both at the site-specific and regional/national scales.
The results of this work show that there is no simple value of uncertainty that can be
assigned to critical loads or exceedances. The critical (most sensitive) parameters in
the calculations differ depending on whether national or site-specific data are used
and differ between habitat types. This is indicated in Figures 6.1.2 and 6.1.3 which
show that when calculations are based on national data (as in Section 3), the key
uncertainties are for base cation and calcium weathering, critical Ca:Al ratio, nitrogen
uptake and leaching, and deposition.



Uncertainty in Critical Load Assessment Models134
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Figure 6.1.1: Critical load represented by a dose-response function

The analysis based on site-specific data (as in Section 2) showed that calcium and
base cation deposition were the most sensitive parameters, but nitrogen leaching
and sulphur and nitrogen deposition were also important. At the site level, the
sensitive parameters varied from one site to another (Section 2). Uncertainties at the
point or local scale can be reduced if all or most of the input data are site-specific,
rather than derived from the national databases, since in general site-specific
uncertainty ranges are narrower and so there is higher confidence that the input
parameters are appropriate. However, there are remarkably few sites in the UK
where many parameters have been measured; this is especially true for the critical
parameters of calcium and base cation weathering and deposition, as these are both
difficult and expensive to measure reliably. The main focus of critical loads research
over the last 10-15 years has been the development of a national database to
produce maps and assessments at the national scale. At this scale, there is little that
can be done to reduce uncertainties because of the scale and cost of collecting
sufficient data.

Analyses carried out under this study have shown how local conditions (soil type,
habitat type, deposition) can vary from information derived from national maps/data
sets, such that critical loads, exceedances and their uncertainties based on site-
specific data can be lower or higher than those based on national data. There are
only three sites with contrasting characteristics for which it was possible to compare
the uncertainties based on site-specific and national data (Section 4); the results for
the probability of exceedance are repeated in Table 6.1.1 below.

Table 6.1.1: Comparison of probability of exceedance results based on national and
site-specific data for three woodland sites
Site Probability of exceedance based on:

Site-specific data National data
Thetford 2% 0.3%
Aber 96% 93%
Liphook 68% 100%

Site-specific and national results are similar at Thetford and Aber, but differ markedly
for Liphook. With only three sites it is difficult to draw definitive conclusions, but the
national data should provide an acceptable prediction of the status of a site. Hence,
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the results are currently insufficient to derive a relationship between national and site-
specific results, or to provide information on when national data may be appropriate
(or not) for use at the site level.

The Environment Agency’s regulatory role is more focused on assessments at the
point- or site-specific scales, rather than at the national scale, which is the remit of
Defra. The questions to be answered will include:

• What is the probability that the critical load is exceeded?
• Is this probability acceptable?
• If not, to what level should deposition be reduced to make it acceptable, and

what are the implications for Environment Agency-regulated sources?
• If the probability of exceedance is acceptable, then to what level can

deposition be increased before it becomes unacceptable?
• What confidence do we have that a site will recover by a defined time, with a

given deposition scenario?

The probability of exceedance will help answer the first two questions. Dynamic
models, already developed for acidified waters in the UK (such as Cosby et al., 2001)
are currently being developed for both acidity and nitrogen for terrestrial habitats (see
Defra-funded project: UK Research on the Eutrophication and Acidification of
Terrestrial Ecosystems) and these will enable the latter questions to be addressed in
due course. The probability of exceedance can be calculated for a single point, a site
(such as a designated area) or regionally/nationally (see below). Using the probability
of exceedance raises further questions:

• Above what percentage probability of exceedance is a site considered to be
at high or very high risk of exceedance?

• Below what percentage probability of exceedance is a site considered to be at
a low or very low risk of exceedance?

• How can or should these thresholds be set?

Scientists typically use the 95 per cent (or five per cent) levels to indicate
significance, but this probability of one-in-twenty is just a long-standing convention.
For a regulator, the level of significance should be related to the “cost” of an
inappropriate decision (where a “cost” can be financial, such as preventing a
development or requiring ameliorating activities, or it might be environmental, such
as the loss of a particular species or habitat). If conventional thresholds are applied -
greater than 95 per cent for a site with a very high risk of exceedance and less than
five per cent for a very low risk of exceedance - this leaves a large category of
‘uncertain exceedance’. This approach could be applied when using national maps of
the probability of exceedance, as a tool to screen individual points or sites. It will
identify the extremes (very low/high risk of exceedance) and highlight sites that fall
between thresholds where additional site-specific data should be collected to reduce
the uncertainty of the results. Alternatively, another expert, for example a
conservation officer, may simply prefer to accept a threshold of greater than 50 per
cent probability of exceedance to define a site as exceeded and therefore be more
certain of action being taken to protect a site.  Additionally, one could argue that the
probability of exceedance could be defined in descriptive terms only (Table 6.1.2),
not quoting the corresponding percentage values.
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Table 6.1.2: Example of descriptive labels for percentage probability of
exceedance
Probability of exceedance Descriptive term
< 5% Very low risk of exceedance
5-25% Low risk of exceedance
25-75% Medium risk of exceedance
75-95% High risk of exceedance
> 95% Very high risk of exceedance

The problems with assigning descriptive terms are: (a) they depend on who defines
the categories; (b) used alone, they are not transparent and thus may not be
defensible. It must always be possible to explain exactly what they refer to and how
they have been defined.

The issue of acceptable thresholds therefore needs further consideration. But in
general, the probability of exceedance will help the Environment Agency make
decisions about the status of a site in terms of critical loads exceedance. How the
results are then used within the Environment Agency’s regulatory role is another
issue, since the next step may be, if the probability of exceedance is below x per
cent, is it okay for industrial plant A to emit y kT of sulphur or nitrogen? Or if the
probability of exceedance is already very high (greater than 95 per cent), will
additional emissions of S or N have any further impact on the site? In the latter case,
an increased load is likely to slow down the (chemical and biological) recovery of the
site. Dynamic models will help in addressing the issue of time scales for recovery.

The sections below outline the steps for calculating critical loads, exceedances and
the probability of exceedance at three scales:

• Points: individual locations of negligible spatial extent.
• Sites: areas where it can usually be assumed that there is uniform deposition,

for example, an SSSI might constitute a site.
• Regions/National: areas where deposition is expected to vary spatially, for

example, East Anglia, England, UK.
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The assessments below follow a slightly different sequence of operations depending
on the spatial scale of interest. The methods for each are only loosely coupled, so
that aggregation and disaggregating may yield different results.

The first step for all three assessments is to determine if the point location, site
features (habitats/species), or region (habitat) is sensitive to acidification or
eutrophication. Databases such as the UK Air Pollution Information System (APIS:
http://www.apis.ac.uk/) can assist in making this decision at the outset. The methods
are applicable for both acidity and nutrient nitrogen assessments.

6.2 Point assessments
A point assessment assumes there is a single habitat at a single location. The
process of assessment is provided in Figure 6.2.1. Decisions and processes are
annotated a) to j) and consist of:

a) If critical loads, exceedances and probability of exceedance have previously
been determined for the point location, proceed to stage (h).

b) If no assessment has previously been carried out, obtain any existing point-
specific data (such as critical load input data, deposition) for that location. The
data may be measured directly or modelled in some form. In most cases, only
a few point specific parameters will be available and in many cases there will
be no specific information.

c) Extract the remaining parameters required from national databases or other
data sources (for example, deposition models such as TRACK).

d) Calculate deterministic critical load and exceedance values (normal
calculations). Appendix 1 of this report describes two of the commonly used
critical load methods; other detailed descriptions of the agreed UK methods
can be found in Hall et al. (2003a, 2004a).

e) Decide if deterministic results are acceptable; if yes, go ahead and use
values. Note here the term “acceptable” is used to denote how certain we are
of the value, not whether the value is environmentally “good” or “bad”. The
more point-specific data, especially for the most sensitive parameters, that
are used in the calculations, the more confident one can be of the results.

f) If the deterministic values are not acceptable, perform an uncertainty analysis
using a Monte Carlo simulation method; Crystal BallTM provides a convenient
‘off-the-shelf’ platform to perform calculations within MS Excel, as do other
commercial packages.

g) Crystal Ball can also be used to process the Monte Carlo simulation results
and produce a probability distribution of exceedance values and a record of
which parameters have the largest effect on predicted values (sensitivity
analysis results).

h) Compare the probability of exceedance with pre-defined threshold values
(refer to discussion above regarding the setting of threshold values). If the
probability is greater than the upper threshold, then the critical load for the
point is considered to be “definitely exceeded” and the process can be
terminated.

i) If the probability of exceedance is below the lower threshold, the critical load
for the point is considered to be “definitely not exceeded” and the process can
be terminated.

j) If the probability of exceedance is below the upper threshold and above the
lower threshold, exceedance of the critical load is uncertain. In these
circumstances, it may be justifiable to revise the range or distribution of one
or more key parameters as identified by the sensitivity analysis. Alternatively,



Uncertainty in Critical Load Assessment Models140

a point-specific estimate of a parameter may be outside any published values
and therefore considered to be suspect. If it is justifiable to revise the
parameters, the Monte Carlo simulation (stage (f) above) and subsequent
stages need to be re-run; if not, the process terminates and the assessment
for the point is inconclusive.
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Figure 6.2.1: Framework for a point-specific assessment
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6.3 Site-specific assessments
It is envisaged that this scale of assessment will be performed on a designated site
such as a Natura 2000 site (SACs: Special Areas of Conservation; SPAs: Specially
Protected Areas) or a Site of Special Scientific Interest (SSSI). Sites like SACs range
in size from around one hectare to more than 100,000 hectares, and may be
composed of several land parcels which may or may not be adjacent. Sites are
designated to protect one or more features, which may be species or habitats, but
where the location of the protected habitat (or species) within the site is usually
unavailable.

This assessment method focuses on habitats as vegetation communities, rather than
species, and was developed under commissioned research for the Environment
Agency (R&D Technical Report SC030310, Wadsworth and Hall, 2005). This work
assumes that site-specific and national estimates contain useful information, but that
both are uncertain. To optimally combine both strands of evidence, some theory of
probability is required: here, we adopt a variation of Bayesian statistics called
Dempster-Shafer statistics (Dempster, 1967; Shafer, 1976). In classical statistics,
probability is the frequency with which something occurs, given a multitude of
repetitions under identical conditions. Outside of situations like picking numbers for
the National Lottery, the identical conditions necessary for a classical interpretation of
probability are rarely, if ever, encountered. In Bayesian statistics, probability is
defined as the degree of belief in a proposition and Bayes’ Rule is used to revise the
belief in the light of new evidence. Those that hold to classical statistics criticise
Bayesians because of their willingness to include subjective (expert) opinion, but
there are many apparently objective situations where subjectivity is critical but at
least partially hidden from view.

For example, in Monte Carlo simulations a decision has to be made as to what
factors to include, how they are correlated, what range of values a random variate
can have and what  the shape of its frequency distribution is (uniform, triangular,
Gaussian). When we adopt a Bayesian point of view, we think we know something
about a situation and we seek evidence that will increase or decrease our initial
opinion or belief. Dempster-Shafer’s Theory of Evidence is essentially an extension
of the Bayesian view that is formulated in a way that makes uncertainty explicit and
open to scrutiny, so that upper and lower bounds on the belief in a proposition (idea,
hypothesis and so on) are generated rather than a single value.

To begin with, we consider the process of calculating or setting critical loads for a
designated site. The uncertainties in applying the national critical loads data to
designated sites are discussed in Section 3.4 of this report. We therefore suggest the
following approaches, highlighting where national data could be used, but offering
alternatives where the national data may be inappropriate. The methods are aimed at
sites where the designated features are habitats rather than species, though the
same approach could be applied if the habitats on which the species depend are
known. Current research for JNCC includes consideration of appropriate methods for
assigning critical loads (both acidity and nutrient nitrogen) to designated site
(principally SSSI) features, both for habitats and species (Hall, Bealey and
Wadsworth, 2005, in preparation).
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6.3.1 Site-specific critical load assessments

Figure 6.3.1 outlines the proposed stages in setting critical loads for acidity; text in
italics refers to the sources of information to help make the decision at each stage.

Stage 1 is the initial step in determining if the feature of interest is sensitive to
acidification before proceeding further.

Stage 2 suggests consulting the map of critical load variance (see Section 3.3 and
Figure 3.3.5) for the site location. If the variance in critical loads is low (where all soils
within a 1 km2 have the same value) and the site is small (less than 1 km2), then the
critical load value from the national map could be used. Otherwise proceed to Stage
3.

The method proposed for acidity is based on relating critical loads data for different
soil types to the soil information available for vegetation communities of the National
Vegetation Classification (NVC, Rodwell 1990 et seq).

Stage 3 deals with the conversion from feature habitats to NVC communities. It
should be noted that more than one NVC class may be associated with a habitat
type. The designated habitats of the UK’s Natura 2000 sites are described by JNCC
in terms of both the EU Habitats Directive Annex 1 habitat types and also the
corresponding NVC classes (http://www.jncc.gov.uk/). Where this information is not
readily available, the conversion to NVC class(es) can be done using (i) the NBN
Habitats Dictionary (http://www.nbn.org.uk/habitats/), or (ii) Modular Analysis of
Vegetation Information System (MAVIS) that assigns NVC classes to groups of
species (http://www.ceh.ac.uk/products/software/CEHSoftware-MAVIS.htm).

Stage 4 applies the Endorsement Theory methodology to set acidity critical loads to
each terrestrial NVC community. Queries in an Access database (supplied to the
Environment Agency) provide an endorsement for each of the six soil acidity
empirical critical load classes (five classes of critical load values for non-peat soils,
and a separate category for peat soils). In the current implementation, five levels of
endorsement are used in descending order: “definitive”, “confident”, “likely”, “weak”
and “very weak”. A definitive endorsement is possible only where there is a great
deal of robust evidence for a particular option (hypothesis/class) and no evidence for
any other alternative, while a very weak endorsement means that there is very little
evidence for that choice. Queries within the database provide reports that describe
why particular endorsements were made in each case. However, the database
requires further validation and quality assurance prior to its widespread application to
designated sites.

Stage 5 deals with uncertainty by combining the local (Endorsement Theory) critical
load with the estimate from the national maps/databases. This is explained in more
detail below.

The framework for incorporating uncertainty in the site-specific acidity assessments
is shown in Figure 6.3.2. Steps (a) and (b) are described under Stages 3 and 4
above. We begin this process with the endorsements for the critical load classes; the
remaining steps in the assessment are described below. See Wadsworth and Hall
(2005) for a detailed description of how to apply the proposed Dempster-Shafer
methodology.
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c) For comparison with the national critical loads data (or other data), the
endorsements are converted into numeric values for belief and uncertainty
required for stage (d). For example, a definitive endorsement could be
translated to give a belief value of 0.9 and an uncertainty value of 0.1.

d) Site-specific critical load values from the endorsement, and national estimates
from the national critical load maps, are combined using the Dempster-Shafer
Theory of Evidence (DS) which is an extension to Bayesian statistics that
allows the explicit representation of uncertainty. The main advantage of this
formulation is that weak evidence for a proposition does not have to imply
strong evidence for something else.

e) From the combined estimate of the appropriate critical load, the probability of
exceedance can be calculated (for example, using Crystal Ball as for the
point-specific assessments).

f) If the probability of exceedance is above the pre-defined upper threshold, the
critical load for the site is considered to be definitely exceeded. If the
probability of exceedance is below the pre-defined lower threshold, the critical
load for the site is considered to be definitely not exceeded. If the probability
of exceedance is below the upper threshold and above the lower threshold,
exceedance of the site critical load is uncertain. If the latter is the case, then
the above processes need to be re-examined to see if the uncertainties in any
of the inputs can be reduced, for example, whether more detailed information
of the soil-vegetation relationships can be obtained.
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Figure 6.3.1: Framework for setting acidity critical loads for designated sites
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6.4 Site-specific nutrient nitrogen critical load
assessments

Critical loads for nutrient nitrogen are based on empirical and mass balance
approaches. The latter is applied in the UK to managed forest habitats and these will
not be considered under this section. Empirical critical loads are estimated for
different habitat types based on experimental or field evidence of thresholds for
changes in species composition, plant vitality or soil processes. These critical loads
are expressed as a range and have been initially set for habitat classes of the
European Nature Information System (EUNIS, Davies and Moss, 2002) to enable
their application across Europe (Achermann and Bobbink, 2003). In the UK, the main
sensitive habitat classes have been translated into Biodiversity Action Plan broad
habitats (Hall et al., 2003a) and single ‘mapping value’ critical load values set for
each habitat to enable exceedances to be calculated (Table 6.4.1). Therefore, if
either the broad habitat or EUNIS class is known, the appropriate critical load values
can be assigned from Table 6.4.1. However, this table only lists the habitat types that
it has been possible to map nationally; nutrient nitrogen critical loads may exist for
other habitat types (such as neutral grassland) and appropriate values for these can
be found in Hall et al. (2003a), Achermann and Bobbink (2003) or on the UK Air
Pollution Information System (http://www.apis.ac.uk). Alternatively if only the NVC
classes were known these could be translated to either broad habitats or EUNIS
classes using the NBN Habitats Dictionary as above for acidity.

There is limited information available to estimate the uncertainties associated with empirical
nutrient nitrogen critical loads. The range of critical load values for each EUNIS class
indicates the variation in sensitivity within an ecosystem. The uncertainty is expressed
qualitatively as “reliable”, “quite reliable” and “expert judgement” (see Table 6.4.1). Hall et al.
(2003b) therefore proposed extending the range of critical load values according to the
reliability category as follows:

##  “reliable” use range as published
# “quite reliable”   ±5 kg N ha-1 yr-1 beyond the range
(#)  “expert judgement” ±10 kg N ha-1 yr-1 beyond the range

The only exception to this rule was the critical load for bogs (EUNIS class D1), where the UK
is using the upper limit of the range as its mapping value; to cover for this, the maximum was
increased to 12 kg N ha-1 yr-1 to provide an estimate of uncertainty.
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6.4 Regional/national assessments
Regional assessments rely on national data to maintain consistency across the entire region. The
process of performing a regional or national uncertainty assessment and aggregating the
uncertainty information is set out in Figure 6.4.1. The assessment consists of the following
stages:

a) If the national scale uncertainty analysis has previously been determined for the
region/habitat, proceed to stage (d).

b) Obtain national input data, such as critical loads, deposition, uncertainty ranges and
correlations specific to the habitat (see Section 3.1.1).

c) Perform uncertainty analysis for all one km grid squares within the region using a Monte
Carlo simulation method; ArcInfo Arc Macro Language (AML) provides a convenient
platform to perform the calculations at this scale and resolution.

d) Calculate the probability of exceedance for every one km grid square (see Sections 3.1.3
and 7.2).

e) Compile a one km database of the probability of exceedance and associated habitat
areas. Map the probability of exceedance (see Figure 3.1.2) to visualise the risk of
exceedance spatially.

f) Generate summary statistics from the one km database, for example, the area of habitat
falling within different classes of exceedance probability (see legend to Figure 3.1.2).
These statistics are useful for comparing the results of different scenarios, such as the
probability of exceedance based on current deposition and on a future forecast of
deposition.
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START

Calculate probability
of exceedance

(a)

(f)

(e)

(d)

(c)
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for region & habitat?

 Obtain national input data

Uncertainty analysis for each 1km 
grid square in region of interest

Probability of exceedance 
database & maps

Yes

No

Summary statistics for 
region of interest

Figure 6.4.1: Framework for regional/national assessment
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6.5 Discussion and conclusions

This study has focused on uncertainties in the calculations of critical loads and exceedances. It
should be remembered that the critical loads maps and data presented are based on empirical or
steady-state mass balance methods, used to define long-term critical loads for systems at steady
state. Therefore, exceedance of these critical loads is an indication of the potential for harmful
effects to systems at steady state. The challenge then is how to relate the probability of
exceedance to the probability of damage. It is not possible to validate these steady state
exceedances in the field unless we know the system is at steady state, and even then we may
not know what indications to look for. Common Standards Monitoring in England identifies only
seven per cent of SSSIs (by area) in unfavourable condition that have air pollution cited as the
reason for their adverse condition. Other factors (such as stresses from climate, species
competition, disease) may simultaneously be contributing to harmful effects. However, the
interpretation of damage, whether caused by air pollution or other factors, is beyond the scope of
this contract. This work deals only with the potential impacts from atmospheric pollution, their
uncertainties and how the policymaker can use this information.

Critical load and exceedance assessments are carried out to answer a number of different
questions. Depending on the type of question being asked, analysis may be required for a single
point, a small site, a region or the whole country. Consistent detailed data are not available
everywhere, but rather than resorting to a lowest common denominator approach, we have
proposed a number of different methods depending on the spatial scale. These methods are
represented by the flow charts above. The drawback of advocating different approaches at
different scales is that the models are of necessity only loosely coupled; the advantage is that the
best use is made of any existing data. It would be useful to be able to trial the alternative
approaches within an active decision-making context, to confirm their utility.
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7 Presentation of uncertainties in
critical loads  exceedances

Summary

• This section describes methods for presenting uncertainty in critical loads exceedances.
The suitability of each method depends in part on the scale of presentation.

• Cumulative frequency charts of the exceedance distribution are a useful way of
presenting uncertainty for a specified habitat for a 1x1 km grid square.

• Cumulative frequency charts of the area exceeded are useful for summarising results at
the UK and European scales.

• Probability of exceedance maps provide a spatial means of communicating uncertainty at
1x1 km resolution for the whole of the UK, or for specific regions.

Deterministic methods of presenting critical load exceedance, which treat the critical load concept
as a set criterion, are well established. Spatially explicit uncertainties in critical load exceedance
estimates are now available and new ways of presenting information on critical load exceedance
are possible. Previous studies have attempted to present this uncertainty in a number of different
ways. Gascoigne and Wadsworth (1999) presented best and worst-case exceedance maps for
grid squares across Wales, which were exceeded under low and high deposition scenarios
respectively. Suutari et al. (2001) presented a series of maps depicting the percentage of
protected ecosystems in Europe using 5, 50 and 95 percent probabilities. Barkman et al. (1999)
calculated and mapped the probability of exceedance in all grid squares in the Svalöv
municipality in Sweden. Syri et al. (2000) showed probabilities associated with different estimates
of area exceeded for Finland. Similar approaches have been applied in this report to explore the
most appropriate method for representing uncertainty within the exceedance calculation.

The aims of this section are to:

• summarise different methods for the communication of uncertainties in critical load
exceedances;

• demonstrate the advantages and disadvantages of each method and suggest under
which circumstances each method may be adopted.

7.1 Deterministic exceedance
When exceedance values are calculated deterministically (uncertainty in input data is not taken
into account), they are generally conveyed to the policy maker as summary statistics, or in map
form, as:

1. Exceedance of critical loads for individual habitats at one km resolution.
2. Exceedance of percentile critical loads; these combine critical loads for different habitats

to protect a specified percentage of the total habitat area, for example 95 per cent. This
method can also be used to aggregate the data to a coarser resolution.

The policy maker often finds it easier to have a single exceedance map, rather than one for each
habitat, to summarise the exceedance information. Hence the data can be used to produce an
acidity critical load exceedance map of the UK, which combines all the habitat information into
one map at any desired resolution using a specified statistic (for example, minimum, 5th
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percentile). Other parameters can be calculated to convey exceedance information to the policy
maker, including:

• the area of sensitive habitats for which the critical load is exceeded;
• the accumulated exceedance (AE) which integrates both the area of habitat exceeded

and the magnitude of the exceedance: AE(eq yr-1) = ∑ exceedance (keq ha -1 yr-1) x
exceeded area (ha);

• where exceedance for non-exceeded areas is taken as zero;
• the average accumulated exceedance (AAE), which is the AE normalised by area.

Exceedance results have generally been required by UK policy makers in terms of area
exceeded and AE. This information is presented in two ways: a table of statistics and maps.

1. Statistics of exceeded area or AE can be derived for each habitat separately and for all
habitats combined and summed across grid squares to give regional or national statistics
as required.

2. Maps of area exceeded and AE are typically derived for all habitats combined and
aggregated to the same resolution as the deposition data.

7.2 Methods for presenting uncertainties in exceedances
This section describes the methods used in this project to present the results of exceedance
calculations when uncertainty is incorporated. Some of the methods below have also been
applied in a case study for Wales, carried out by Heywood et al. (2006b).

7.2.1 Frequency chart and statistical measures

This method has been used in Section 3 (Figure 3.1.1(a)) to present the probability of exceedance
distribution. The frequency chart shows the number, or frequency of values, occurring in a given
exceedance interval (bin).  Statistical measures (Table 4.2.1) such as mean, standard deviation and
percentile information are descriptive statistics of the probability distribution.

7.2.2 Cumulative frequency chart and inverse cumulative frequency
chart

Cumulative frequency charts (Figure 3.1.1(b)) show the number or percentage of values less
than or equal to a given amount.  Inverse cumulative frequency charts (Figure 3.1.1(c)) show the
number or percentage of values greater than or equal to a given amount.

7.2.3 Percentiles of predicted exceedance

The 95th percentile estimates of exceedance were used to map the exceedance (positive or
negative) for each one km grid square in the South East of England for an individual habitat (for
example, Figure 5.3.3). Four different statistics were used to compare the model predictions (see
tables within Sections 5.3.3 and 5.3.4). These were:

1. The number of one km square coniferous forest areas where the median of predicted
exceedances was more than zero.

2. The number of one km square coniferous forest areas where the 95th percentile of
predicted exceedances was more than zero.
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3. The median of the estimates of the number of squares where deposition exceeds critical
load.

4. The 95th percentile of estimates of the number of squares where deposition exceeds
critical load.

Statistics 1 and 2 were obtained by calculating the 95th percentile or median of the predicted
exceedance, then counting the number of sites where the specified percentile exceeds zero.
Statistics 3 and 4 were obtained by counting the number of sites where the predicted
exceedance exceeds zero for each iteration of the Monte Carlo simulation, and then calculating
the 95th percentile or median of the number of sites over all iterations.

7.2.4 Probability of exceedance

In summary, the probability of exceedance is the probability of achieving exceedance values
above zero. The resulting probability values for each one km grid square can be classified and
mapped to give a spatial representation of which grid squares have a high/low probability of
exceedance for the whole of the UK (Figure 3.1.2). The legend to Figure 3.1.2 also includes the
area of coniferous woodland in each exceedance probability class.

7.2.5 Cumulative frequency chart of habitat exceedance

The cumulative frequency chart of habitat exceedance was derived by calculating the area
exceeded within various levels of exceedance probability and can be presented in tabular form
(the legend of Figure 3.1.2) or graphical form (Figure 3.1.3). Figure 3.1.3 gives the percentage of
coniferous woodland in the UK that will be exceeded with a probability of x per cent or less.

7.3 Discussion
A deterministic critical load assessment is based on the principle that the deposition of sulphur,
oxidised and reduced nitrogen deposition should not exceed the critical load. Several methods of
displaying uncertainty in critical load exceedances to both scientists and policy makers have
been presented. No single method is recommended, but a choice should be made depending on
a number of factors including:

• ease and speed of producing the statistics/maps;
• ease of interpretation of the data/maps;
• whether spatial or non-spatial information is required;
• the size of area to be mapped;
• whether it is important to the decision maker that the shape of the probability distribution

function, or at least some of its characteristics be retained.

Frequency charts condense much information into a small space. It is possible to display the same
information in several different ways, both using cumulative frequency charts and inverse cumulative
frequency charts. The advantage of displaying these charts for individual one km grid squares is that it
gives the decision maker information on the entire shape of the exceedance distribution, enabling them to
read off the probability of any exceedance value (positive or negative). The disadvantage is that the
decision maker may find the amount of information overwhelming and difficult to interpret for many one km
grid squares.

To overcome the problem of situations where more than a few grid squares need to be
presented, colour-coded maps have been used to communicate the level of risk of exceedance
of critical loads for sulphur and nitrogen at specific geographical areas. The percentile of
predicted exceedance maps used to present the exceedance data generated from the deposition
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and critical load uncertainty data are similar to the methods used to present the deterministic
data, and hence have the advantage that the decision maker is already familiar with the format.
However, this could also be seen as a disadvantage since it may not be obvious to the decision
maker that they are reading different information. Statistics 1 and 2 (see section 7.2.3) provide a
measure of the likelihood of exceedance for individual one km squares and are useful in
assessing the extent of exceedance at individual sites. Statistics 3 and 4 (see section 7.2.3)
provide measures of the overall sensitivity of the region to acid deposition and are useful in
assessing the extent of exceedance over the whole region. Disadvantages of these statistics are
that they give no information on the area of habitat exceeded, and they use the concept of an
absolute criterion, where the critical load is either exceeded or not exceeded at set percentiles.

Probability of exceedance maps can be also be used to represent risk of exceedance at one km resolution
(Figure 5.3.5 and Figure 5.3.6 and Section 3.1.2). However, this method retains the probabilistic nature of
the exceedance information. The legend in Figure 3.1.2 shows the area that falls into each of the
probability classes. At the national scale, these maps can become hard to interpret and only general spatial
trends can be recognised.

The data can be aggregated by country or county using the cumulative frequency of habitat exceedance
charts (Figure 3.1.3).  The advantage of this method is its relative simplicity, in that it summarises both the
area and probability of exceedance information for the whole of the UK, but in doing so it loses any spatial
element. This method provides national area statistics for any desired range of probability of exceedance
and as such could be very useful for making national policy decisions, for example on the potential benefits
of different emission abatement strategies.

To summarise, we suggest that:

• the cumulative frequency chart is particularly suited to presenting uncertainty information for a one
km grid square for a specific habitat;

• percentile of predicted exceedance statistics and maps are used for specific percentile exceedance
scenarios, for example 50th and 95th percentiles.

• probability of exceedance maps provide one km resolution risk of exceedance information spatially;
• cumulative frequency of habitat exceedance charts summarise the area within ranges of probability

of exceedance classes and are suitable for large areas, such as the UK.

7.4 Conclusions
By using exceedance distributions, absolute criteria are avoided. Presenting uncertainties in critical load
exceedances helps identify areas with different levels of risk for harmful effects and allows the policy maker
to decide on acceptable levels of risk, such as a 50 per cent or five per cent probability of exceedance.

Each approach of presenting uncertainty explored in this report is applicable at different scales. The area
cumulative frequency chart can be used at the UK and European scales for national and international
policy development. Probability of exceedance maps are useful at the regional scale. Exceedance of
specified percentile statistics are useful in assessing the extent of exceedance for the whole region or at
individual sites. Cumulative frequency charts of one km data are more appropriate for local assessments.
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8 Source sector contributions to
exceedance

Summary

• The TRACK model was used to calculate the contribution of various source sectors to
critical load exceedance at Liphook. Monte Carlo analysis was used to generate
cumulative distribution functions for exceedance with and without each sector
contribution.

• In this case study, there was a 41 per cent probability of exceedance given 2002
deposition. Excluding power stations and oil refineries made a negligible difference.
Excluding all large point sources reduced the exceedance probability to 30 per cent, and
excluding local ammonia sources to 35 per cent.

• This case study demonstrates the methodology: the proportions attributable to each
source sector are likely to vary across the country.

8.1 Liphook case study
The aim of this task was to make recommendations on the source sectors requiring the greatest
attention in critical load assessment. A limited number of TRACK model runs were conducted to
ascertain the contribution of various Environment Agency-controlled source sectors to a sensitive
coniferous forest receptor at Liphook. Predicted deposition rates were compared with the critical
loads for coniferous forest.

The TRACK model was used to predict sulphur and nitrogen deposition rates at a sensitive
receptor site in the coniferous forest area near Liphook in Hampshire (GR 4805 1295). The
following model runs were carried out:

• baseline for 2002 including all emission sources;
• baseline excluding all UK large point sources;
• baseline excluding power stations;
• baseline excluding refineries;
• baseline excluding local ammonia emissions.

A Monte Carlo simulation of the exceedances of the critical loads was then carried out for each
case, based on the statistical parameterisation of model errors and critical load uncertainty as
described in Section 5. One thousand iterations of the Monte Carlo simulation were done in each
case. A Liphook type probability distribution for the critical loads was assumed to apply. Figure
8.1.1 shows the cumulative distributions for the calculated exceedances.
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Figure 8.1.1: Cumulative probability distributions of predicted exceedances of coniferous
forest critical load for 2002.

The baseline model run for 2002 with all source sectors showed that the predicted deposition
rate was slightly less than the critical load. However, the Monte Carlo simulation indicated that
there was a 41 per cent chance of exceedance.

Excluding the contributions from power stations only and refineries only leads to a negligible
reduction in deposition at the Liphook site. Excluding all UK large point sources reduces the
chance of exceedance to 30 per cent. Excluding the contribution from local agricultural emissions
of ammonia reduces the chance of exceedance from the baseline 41 per cent  to 35 per cent . It
is concluded that reducing the emissions from power stations and refineries alone will not reduce
the chance of exceedance of the critical load for coniferous forest at Liphook. Reducing the
emissions generally from all Environment Agency-regulated sources would have some effect on
reducing the chance of exceedance: the effect is comparable with that associated with local
ammonia emissions from agriculture.

8.2 Conclusion
This case study shows that power stations and refineries make a negligible contribution to critical
load exceedance at Liphook. The contribution of local agricultural sources and Environment
Agency-regulated sources in general are comparable, but the maximum effect is to reduce the
chance of exceedance from 41 per cent  to 30 per cent. These conclusions are, however, site-
specific. Repeating the analysis elsewhere in the country may lead to different conclusions,
depending on the proximity and strength of the different source sectors. It may be possible to
produce a map showing the relative contributions of each source sector in different places. With
more difficulty, this could be developed into a tool to calculate the reduction in exceedance
probability which would result from action on any given source sector.
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9 Suggestions for further work
Site-specific uncertainty

More examples of critical load methods which are under-represented in this work should be run,
such as acidity critical loads for heathlands and unmanaged forests, and nutrient nitrogen critical
loads for managed forests. The work could be extended to broad habitats, which use the same
methods (broadleaved woodland, acid grassland and calcareous grassland), though these would
not be different in principle. Some consideration could be given to the habitats which use different
critical load methods which are less amenable to error propagation uncertainty analysis, because
the uncertainty is largely in model definition or habitat definition (such as peatlands). Work on
more sites would produce a more complete set of probability distributions for critical loads and
enable the investigation of appropriate distributions to use in regional applications such as those
described in Section 5.

Comparison of site-specific and national data

Further sites need to be analysed before any general conclusions can be drawn on the likely
effects of using national or site-specific data on critical loads or critical load exceedance.

National scale uncertainty

The national scale analysis presented in this report only applies to critical loads for managed
coniferous woodland and exceedances based on mean deposition data for 1999-2001. Data for
other habitat types and other years may be calculated and presented using the methods
described.

To provide risk information for different deposition scenarios the uncertainty analysis would need
to be redone, since Skeffington et al. (2006) and other work in this report shows that a reduction
in deposition over time reduces uncertainties in deposition and makes the critical load
uncertainties relatively more important.

Practical regulation

It would be very useful to work through some examples of critical load and exceedance
assessments using real situations. Such situations might be an assessment of a designated site,
for example. This would test the real world applicability of the methods proposed in the earlier
sections, and enable further progress towards a practical methodology.
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10 Overall conclusions
The overall aim of the project was “to examine the uncertainties in critical load assessments and
develop a practical methodology for such assessments within the Environment Agency’s
regulatory role”. We have undertaken an extensive examination of uncertainties in critical loads
and exceedances in the UK, and in Section 6 proposed some frameworks for critical load and
exceedance assessment at various spatial scales. Since the Environment Agency’s regulatory
functions are diverse and dissimilar, however, it seems worthwhile in this section to consider the
project as a whole and its implications for the Environment Agency’s activities.

Does uncertainty matter?

In its original form, the critical load is a ‘hard’ concept – a threshold deposition below which
harmful effects do not occur, and above which they do. Uncertainty is not considered. This
corresponds well with traditional environmental standard setting, where a single value can be set
for an environmental limit which is designed to protect some aspect of the environment. This
approach has the advantage of being relatively easy to apply, it appears authoritative and
objective, and it is easy to communicate to policy makers. Acknowledging that the critical load is
in fact uncertain reduces the authority of the concept, makes it harder to explain and apply, and
requires difficult decisions and value judgements to be made.

So what are the advantages of introducing uncertainty? Firstly, it is more honest. Critical loads,
like other environmental quantities, are intrinsically uncertain. Environmental scientists have a
professional responsibility to communicate the degree of confidence they have in the
environmental effects they predict and the standards they propose; the most objective way to
assess this degree of confidence is by an uncertainty analysis, such as the one carried out for
this report. Secondly, it should increase the quality (fitness for purpose) and accuracy of the
proposed critical loads. Critical loads, like other standards, often have a precautionary element
built in, but without an explicit acknowledgement and calculation of uncertainty, it is impossible to
assess how precautionary a given limit is. Even if the critical load is treated ultimately as a simple
limit value, uncertainty analysis should provide a better estimate of its magnitude. Thirdly, the
assessment of uncertainty, and in particular sensitivity analysis, is essential in evaluating and
improving the models which lie behind critical load calculations. It can indicate which parameters
would be the best targets for more accurate measurement, whether the inevitable model
simplifications are reasonable representations of reality, and can help evaluate whether model
additions are worthwhile. Thus, it can lead to more robust models. Fourthly, introducing
uncertainty can help identify and avoid potential surprises due to inadequacies in data and model
structures. For these reasons, it seems worthwhile to try to evaluate critical load uncertainties.
More detailed discussion of these points can be found in the literature (Barkman, 1997;
Skeffington, 2006).

How to conduct an uncertainty analysis of critical loads

Our investigation of critical load uncertainties explored to some extent the best ways to
characterise input parameters for the critical load and exceedance models; that is, what values,
ranges, statistical distributions and intercorrelations are most appropriate. In most cases these
can be derived only by expert judgement, though we have tried to use objective methods
wherever possible. Our investigations showed for a limited set of examples that inclusion of
certain features made a significant difference to the results (such as intercorrelations between
deposition parameters), whereas others were of limited importance (statistical distribution of
catchment parameters) and some of no importance at all. The characteristics we chose are set
out in the report and its appendices, and can serve as a guide for future assessments, since the
frameworks described in Section 6 require such assessments in some situations.
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Other sources of uncertainty

Uncertainty analysis as used in this report only evaluates uncertainties in the input parameters
and how these propagate through the models. Other forms of uncertainty are harder (or
impossible) to quantify even when they can be identified, such as the uncertainties in mapping
broad habitats mentioned in Section 3. Unknown processes may be involved, though these
cannot of course be incorporated into the models (epistemological uncertainty) and there may be
systematic errors of various sorts and approximation uncertainties due to model simplifications.
All these must be borne in mind in specific applications, because they can sometimes be taken
into account even if they cannot be quantified.

How uncertain are critical loads?

A meta-analysis of the entire set of critical load data (Section 2.3) showed coefficients of variation
(CVs) generally between 5% and 60%, with different values applicable to different nodes on the
critical load function: 30-60% for CL(A), 25-50% for CLmaxS, 10-35% for CLmaxN, 5-25% for
CLminN, and (based on a very limited sample) about 15% for CLnutN. To those familiar with our
knowledge of the underlying processes, these values seem remarkably small, especially given
that individual input parameters typically have wider limits. The ‘compensation of errors’
phenomenon reduces the calculated uncertainties of the critical load models, as described in the
text. Environmental regulators may in contrast feel that these uncertainties are uncomfortably
large. For instance, at no site can we be 100% confident of either exceedance or non-
exceedance. Some suggestions as to how to deal with this level of uncertainty are given in the
following sections. There is substantial variation in uncertainty between sites and types of site,
but these CVs could be used as a rough guide as to the uncertainty in individual cases in the
absence of other information. However, more data are really required. The level of uncertainty
indicated does, however, imply that it is worthwhile continuing to use critical loads for
environmental assessment.

Which input parameters have most influence on uncertainty?

If certain input parameters were consistently important for uncertainty, this would suggest that
research into the values of these parameters would be most valuable in reducing it.
Unfortunately, for coniferous forests at least, it appears that almost any parameter can be
important depending on site characteristics. There are indications that there may be classes of
site; for instance, for low weathering rate sites, uncertainty in calcium deposition appears likely to
be important for critical load estimation. This illustrates also that deposition of calcium (or base
cations) can be important for critical load as well as exceedance calculations. For aquatic
ecosystems, one parameter, the present-day non-marine base cation concentration, is most
important for uncertainty. This implies that a better estimate of this parameter will reduce the
uncertainty in the critical load estimates. This could be obtained by more sampling; many UK
aquatic critical loads are based on a single sample taken over 10 years ago. However, it also
implies that there are limits to this process, as such concentrations are intrinsically variable.

How to deal with uncertain critical loads

Instead of a single value for a critical load or exceedance, the product of an uncertainty analysis
is a probability distribution. This can be used in a number of ways, but some decisions have to be
made in order to do so. For a given site, the uncertainty analysis may indicate that with current
deposition, the probability that a critical load is exceeded is (say) 62 per cent. A statistical
distribution showing probability of exceedance versus deposition can be used to read off the
probability for any given deposition level, so for this site it might indicate that a reduction in
deposition of 200 eq ha-1 yr-1 is required to reduce the probability of exceedance to 50 per cent,
and of 800 eq ha-1 yr-1 to reduce it to 10 per cent. This raises the question: what probability of
exceedance is considered acceptable?
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It might be tempting to use the conventional probabilities used in statistical significance testing
(where the probability must be less than five or one per cent to be considered acceptable), but
this should only be done with due consideration. There is nothing sacred about the conventional
significance levels. They were proposed by R. A. Fisher in the early twentieth century for
analysing agricultural experiments. The appropriate probability level should be a decision by the
regulator, which raises the question of how the level should be chosen. In Section 6 we suggest
that probability level should be related to the “cost” of an inappropriate decision (where a “cost”
can be financial, such as preventing a development or requiring ameliorating activities, or
environmental, such as the loss of a particular species or habitat). This may make those who
have to choose these levels somewhat uncomfortable, but it means that the choices are explicit
and transparent, whereas using non-probabilistic methods they tend to be implicit and opaque.
The width of the uncertainties of critical loads and exceedances revealed by this report implies
that use of excessively precautionary criteria will be very expensive, requiring large reductions in
deposition with concomitant costs.

The importance of spatial scale

Critical loads are calculated for several habitats on each of over a quarter of a million kilometre
squares covering the UK. Measured data are available for only a tiny proportion of these habitats;
the rest must rely on modelled data which depend largely on accurate identification of the
physical and biological characteristics of each mapped habitat, and accurate estimates of the
deposition of acidifying and basic substances. Section 4 showed that using national data for sites
for which measured data are available can lead to very different results to those which use the
measurements. This does not mean that the national default data are wrong, just that they were
generated for national-scale assessment and are thought adequate for that purpose. We show in
Section 3 that applying the national critical loads data to individual sites can give rise to
anomalous values, particularly for larger sites with variable soils and habitats. Similarly, the
habitat critical load maps provide a national picture of their distribution and sensitivity to
acidification and eutrophication, appropriate for assessments at the national scale. They may be
inappropriate for site-specific assessments. The procedures for critical load assessment should
therefore differ depending on scale. In Section 6 we provide a set of procedures for critical load
assessment at the local, regional and national scales.

How to present uncertainties

There are numerous ways of presenting critical load and exceedance uncertainties. Which is
chosen will depend on the purpose of the presentation, the sophistication of the user, and the
amount of information which is desired or is possible to communicate. It should be clear to the
viewer what sort of information they are seeing. Section 7 makes some suggestions for
presenting exceedance uncertainties at different spatial scales. The cumulative frequency chart
loses least information and is particularly suited to presenting uncertainty information at large
scales, for example for a one km grid square for a specific habitat. Maps and statistics showing
the value of a given percentile of predicted exceedance can be used at regional or local scales.
Probability of exceedance maps provide spatial information at one km resolution about risk of
exceedance. Cumulative frequency of habitat exceedance charts summarise the area within
ranges of probability of exceedance classes and are suitable for large areas, such as regions or
the UK, but provide no spatial information. Other presentations may also be appropriate in other
circumstances.

How to use uncertainties in regulation

Section 6 provides flow charts and descriptions to guide critical load, exceedance and uncertainty
assessments at the local (point, site), regional and national scales. A point is a single habitat in a
single location, whereas a site will typically be a designated site (a SSSI or Natura 2000 site)
which may occupy quite a wide area and consist of several habitats. The flow charts suggest a
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series of actions depending on the circumstances, and should be consulted for details. One clear
message from the charts is that if the uncertainty is considered too large, it can be reduced by
using site-specific data. These may be data that already exist, and include checking that the
critical load models are appropriately parameterised, for example, that a designated feature of a
site (such a certain habitat) is present on the soil type the critical load model is assuming. In the
absence of existing data, new data can be obtained if it is considered that the cost and
importance of the site warrants it. Data from well-studied sites described in this report show
clearly that uncertainties can be reduced by collecting more data, but it should be understood
that this could take several years and that many of the quantities required are intrinsically difficult
to measure.

In general, the following scheme might be adopted:

• Identify a probability of exceedance below which the risk of significant harmful effects is
acceptably low, and therefore further emission reductions are not required.

• Identify a probability of exceedance above which the risk of significant harmful effect is
unacceptably high, and therefore further emission reductions are required.

• For probabilities of exceedance between these two extremes,a precautionary approach could
be adopted, in which case the deposition would be reduced depending on the cost-
effectiveness of the measure. Alternatively, further study could be recommended on those
parameters that dominate the overall uncertainty.

How to determine the influence of different emission sources

Section 8 describes a case study showing how separate modelling of different source sectors
can be used to assess their influence on critical load exceedance at a given point. In principle
this could be applied everywhere in the country, though this would be rather laborious. There are
liable to be spatial patterns due to the uneven distribution of different types of source, but the
method could be used at any given site.

To conclude

Overall, we believe this report gives an indication of the uncertainties likely to be found in the
most widely used critical load assessment models. Some models are better covered than others,
however, and more data would be valuable. We also believe we have shown how the
Environment Agency could use uncertainty assessment to improve the quality of its regulation of
emission sources. The uncertainty analyses contained in this report should give an indication of
the reliability of critical load models, and the weight which should be put on them during the
Environment Agency’s regulatory activities.
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 List of abbreviations
ANC acid neutralising capacity
CV  coefficient of variation: standard deviation divided by the mean, expressed as a
percentage
FAB  first order acid balance
SD  standard deviation
SMB simple mass balance
SSMB steady state mass balance

Critical loads function parameters – see Appendix A1.2

CLmaxS  critical load for acid deposition when nitrogen deposition is zero
CLmaxN critical load for acid deposition when sulphur deposition is zero
CLminN critical load of acidity due to nitrogen removal processes alone
CL(A) critical load for acidity (taking into account base cation uptake and deposition)

Critical load equation parameters:

* refers to the non-marine contribution
dep deposition of the substance in question
Sdep sulphur deposition
NO3

- 
dep nitrate deposition

NH4
+

dep ammonium deposition
Ndep NO3

- 
dep + NH4

+
dep

BC base cations (Na+ + K+ + Ca2+ + Mg2+)
Bc originally, base cations other than Na+. In the UK implementation of the equations,

however, Bc is equivalent simply to Ca2+

BC dep base cation (Na+ + K+ + Ca2+ + Mg2+) deposition
ANCw acid neutralising capacity generated by weathering
Caw calcium released from soil minerals by weathering
Cacorr proportion of ANCw which is Ca weathering
BCu base cation uptake into plants
Cau uptake of calcium into plants
Q run-off or effective rainfall
[BC]l limiting concentration below which plants are considered to be unable to take up

base cations
Ca/Alcrit critical ratio of Ca to Al in the soil solution, defining the damage threshold
Kgibb gibbsite equilibrium constant, defining the relationship between H+ and Al

concentrations in soil solution
Ni immobilisation of nitrogen (into soil organic matter)
Nu uptake of nitrogen into plants
Nde denitrification (conversion of inorganic N into N2 or N2O)

Critical load parameters specific to FAB:

f fraction of catchment area which is forested
r ratio of lake area to total (lake + catchment area)
Nret in-lake retention of N
Sret  in-lake retention of S
BCle leaching of base cations (Na+ + K+ + Ca2+ + Mg2+)
ANCle  acid neutralising capacity leaching
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Appendix A – Methods Section 2
Appendix A contains details and methods for Section 2 of the main report site-specific uncertainty.

1.1 Monte Carlo analysis
Monte Carlo analysis is a well-established method for assessing the effects of uncertainty in model
parameters on model outputs. Parameter values are sampled from known or assumed distributions, and
the model is run repeatedly to generate a distribution of output values. For the applications described in
this report, the critical load model being used (see below) was run 5,000 times using a commercial
software package, Crystal Ball (Decisioneering UK Ltd), which operates as an add-on to Microsoft Excel. It
uses pseudorandom numbers produced by a multiplicative congruential generator with a repeat period of
2,147,483,646 to randomly sample input distributions. The program allows the covariance structure of the
inputs to be taken into account. The results of the Monte Carlo analysis depend critically on the means,
ranges and distribution types chosen for each parameter. Attempts were made to produce the best
possible estimates given knowledge of the Liphook site as described in the report.

Our Monte Carlo analysis included a sensitivity analysis, in which the sensitivity of each output parameter
to variation in the input parameters is assessed. The sensitivity analysis is based on rank correlation
coefficients between individual input parameters and the given output parameter. A high value for the rank
correlation coefficient for an input parameter implies a high sensitivity of the output to that parameter. The
use of rank rather than parametric correlations allows the analysis of non-linear equations provided the
relationship is monotonic (which it is). As it is easier to interpret, data are expressed as a percentage
contribution to variance by squaring the original rank correlations and normalising to 100%. The technique
of using rank correlations is well-established and described in textbooks such as Saltelli et al. (2000).

1.2 The critical load function
Deposition of both sulphur and nitrogen compounds can contribute to exceedance of the acidity critical
load. The critical load function was developed under the UNECE Convention on the Long Range Transport
of Air Pollutants and defines combinations of sulphur and nitrogen deposition that will not cause harmful
effects. The critical load function (CLF) is a three-node line on a graph representing the acidity critical load.
Combinations of deposition above this line exceed the critical load, while all areas below or on the line
represent an ‘envelope of protection’ where critical loads are not exceeded (Figure A1).

CLmaxS represents the critical load for acidity when nitrogen deposition is zero. Conversely, CLmaxN is the
critical load for acidity when S deposition is zero. CLminN is the deposition-independent critical load of
acidity due to nitrogen removal processes alone (nitrogen uptake, immobilization, and denitrification). The
critical load is equal to CLmaxS when all nitrogen deposition is taken up by the catchment, hence the
horizontal portion of the critical load function. Not shown in Figure A1 is the critical load for nutrient
nitrogen, which may be any value on the N-axis greater than or equal to CLminN. This represents the
eutrophying, as opposed to acidifying, effects of nitrogen.

Formulae for calculating these quantities are given in the explanations of the various critical load models
below.



Uncertainty in Critical Load Assessment Models170

Figure A1: The critical load function

1.3 SSMB model
1.3.1 Detailed model description
The steady state mass balance (SSMB) model is the most commonly used model in Europe for the
calculation of acidity critical loads for woodland ecosystems. The model is based on balancing the acidic
inputs to and outputs from a system, to derive a critical load that ensures a critical chemical limit (related to
effects on the ecosystem) is not exceeded (Sverdrup and De Vries, 1994). The equation has been derived
from a charge balance of ions in leaching fluxes from the soil compartment, combined with mass balance
equations for the inputs, sinks, sources and outputs of sulphur and nitrogen (Posch et al., 1995). The
SSMB equation can be written as:

where:

• concentrations and fluxes are expressed in equivalence units, such as eq ha-1 yr-1 (molc ha-1 yr-1);
• CLmaxS is as defined in Section A1.2;
• * refers to the non-marine contribution;

the suffixes represent:
• dep – deposition;
• w - weathering (release of base cations from soil or rock minerals);
• u - uptake by plants into perennial tissues;
• BC  is the flux of base cations (Na+ + K+ + Ca2+ + Mg2+);
• Bc is the flux of base cations other than Na;
• (Bc/Al)crit is the critical Bc /Al ratio defined by the user;
• Q is effective rainfall/run-off;
• Kgibb is the gibbsite equilibrium constant, defining the relationship between H+ and Al3+

concentrations in the soil solution.
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UK practice (Hall et al., 2003) is to use a variant of this equation in which the Bc terms represent only Ca2+

rather than  K+ + Ca2+ + Mg2+. If all three base cations are used, critical loads calculated for the UK are high,
largely because the deposition of marine Mg2+ elevates the numerator of the equation. There is then little
exceedance even in areas known to be sensitive to acidification (Reynolds, 2000). It is also assumed that
plants cannot take up Ca2+ at concentrations below 2 µeq L-1, (known as the limiting base cation concentration)
and this value, converted into a flux by multiplying by Q, is subtracted from the numerators of the two
expressions involving Bc in Equation A1.

The minimum critical load for nitrogen CLminN (Figure A1) represents the critical load of acidity due solely to
nitrogen removal processes in soil:

CLminN = Nu + Ni + Nde (A2)
where:

Ni immobilisation of nitrogen (into soil organic matter);
Nu uptake of nitrogen into plants;
Nde denitrification (conversion of inorganic N into N2 or N2O);

The maximum critical load for N CLmaxN in the UK is:

CLmaxN = CLmaxS + CLminN (A3)

The practice recommended in the Mapping Manual (UBA, 2004) is to make the denitrification rate
dependent on available nitrogen, which would introduce Nde as a factor in Equation A3, but the UK does
not follow this practice. Instead, it uses a fixed rate of denitrification dependent on soil type (Hall et al.,
2003) which simplifies calculations considerably. The UK also defines a critical load for acidity CL(A),which
takes into account base cation fluxes, as:

CL(A) = CLmaxS + *BCdep - *Cldep - *BCu (A4)

This was also calculated and reported in this study.

Exceedance is defined as the amount by which deposition exceeds the critical load. Posch (1999) provided
four equations for calculating exceedance of the critical load function, each of which applied to one of four
regions in the zone of exceedance. In the UK implementation of critical loads, where the relationship
CLmaxN = CLmaxS + CLminN (Equation A3) holds, this can be simplified into a unified expression depending
on whether nitrogen deposition exceeds CLminN or not:

Ex = Sdep - CLmaxS where Ndep < CLminN 
Ex =  Ndep + Sdep - CLmaxN where Ndep ≥ CLminN (A5)

1.3.2 Input parameter sets used

Table A1: Base case - Liphook (Section 2.1.2)
Parameter Units Mean Lower Upper SD Distribution Correlations
BCw eq ha-1yr-1 100 0 200 Rectangular None
BCu eq ha-1yr-1 250 125 375 Rectangular None
Ca dep eq ha-1yr-1 430 215 Normal None
Ca corr unitless 0.1 0 0.2 Rectangular None
Ca w eq ha-1yr-1 10 Calculated None
Ca u eq ha-1yr-1 160 43.2 Normal None
Q m3 ha-1yr-1 4,100 943 Normal None
[BCl] µeq L-1 2 2 2 None None
Ca/Alcrit mol mol-1 1 0.5 1.5 Rectangular None
KGibb m6 eq-2 950 760 1140 Rectangular None



Uncertainty in Critical Load Assessment Models172

Table A2: Effects of correlation of deposition terrestrial parameters - Liphook
Parameter Mean Lower Upper SD Distribution Correlations
BCw 150 50 250 - Rectangular
BCu 270 135 540 - Rectangular 0.9, Bcu; 0.75, Nu
Cacorr 0.57 0.47 0.67 Rectangular
Bcw 85.5 - Calculated
Bcu 125 80 320 Rectangular 0.9, BCu
Bc/Alcrit 1 0.5 1.5 Rectangular
Kgibb 950 300 3,000 Rectangular
Q 4,690 4,221 5,159 Rectangular
Nu 500 400 600 Rectangular 0.75, BCu
Ni 214 107 321 Rectangular
Nde 71 35.5 105 Rectangular
Bc is equivalent to Ca in the UK application of the SSMB. Units are as in Table A1. See Section 2.1.5.

Table A3: Deposition parameters - Liphook
Parameter Mean Lower Upper SD 1Distribution Correlations
BCdep 1,965 1,367 2,543 289 TL Sdep, 0.63; NO3dep, 0.17;

NH4dep, 0.45; Cldep, 0.97.
Bcdep 175 109 241 33 TL Sdep, 0.76; NO3dep, 0.47;

Cldep, 0.51.
Cldep 1,300 820 1,780 240 TL BCdep, 0.97;Bcdep, 0.51;

Sdep, 0.56;NO3dep, 0.30;
NH4dep, 0.52.

*Cldep 55 35 75 10 TL
Sdep 781 437 1,125 172 TN BCdep, 0.63; Bcdep, 0.76;

NO3dep, 0.44;Cldep, 0.56.
NO3dep 392 150 634 121 TL BCdep, 0.17;Bcdep, 0.47;

Sdep, 0.44;NH4dep, 0.51;
 Cldep, 0.30.

NH4dep 513 193 833 160 TL BCdep, 0.45; NO3dep, 0.51;
Cldep, 0.52

Units are eq ha-1yr-1. 1Distribution types: T indicates truncated at ± 2 standard deviations; N - normal, L -
lognormal. See Section 2.1.5.

Table A4: Input parameters – comparison of distribution types
Limits

Parameter 1Mean 2Lower 3Upper 4SD 1Correlations
BCw 150 50 250 50
BCu 270 135 405 67.5 0.9, Bcu; 0.75, Nu
Cacorr 0.57 0.47 0.67 0.05
Bcw 85.5 -
Bcu 160 80 240 40 0.9, BCu
Bc/Alcrit 1 0.5 1.5 0.25
Kgibb 1,650 300 3,000 675
Q 4,690 4,221 5,159 234.5
Nu 500 400 600 50 0.75, BCu
Ni 214 107 321 53.5
Nde 71 35.5 107 17.75
Units are eq ha-1yr-1. 1Applies to all distributions. 2Applies to all except normal, where it is zero or a very
small number in the case of Bc/Alcrit

 or Kgibb. 3Applies to all except normal, where it is infinity. 4Applies to
normal and truncated normal. See Section 2.1.7.
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Table A5: Terrestrial input parameters for the three site comparison
Liphook Thetford Aber

Parameter Mean Lower Upper Mean Lower Upper Mean Lower Upper
BCw 150 50 250 4,600 2,300 6,900 163 120 300
Fertiliser - - 177 133 221
BCu 270 135 540 270 135 540 316 284 348
Cacorr 0.57 0.47 0.67 0.90 0.85 0.95 0.092 0.042 0.142
Bcw 85.5 - 4140 15
Bcu 125 80 320 160 80 240 160 80 320
Bc/Alcrit 1 0.5 1.5 1 0.5 1.5 1 0.5 1.5
Kgibb 950 300 3,000 950 300 3,000 100 10 300
Q 4,690 4,221 5,159 1,620 1,458 1,782 5,930 5,337 6,523
Nu 500 400 600 210 105 315 246 221 271
Ni 214 107 321 71 35.5 107 150 120 180
Nde 71 35.5 107 71 35.5 107 35.5 28 43
Units are as in Table A1. Distributions are all rectangular, and correlations are as in Table A2.

 Table A6: Deposition input parameters for the three site comparison
Site Thetford Aber
Parameter Mean Lower Upper SD 1Dist. Mean Lower Upper SD 1Dist.
*BCdep  190 100  340 2 L  397 197 597 100 TN
Bcdep  220 117  415 2 L  485 243 327 121 TN
Cldep  - -
*Cldep  0 0
*Sdep  490 260  925 2 L 1,481 881 2,081 300 TN
NO3dep 1,240 657 2,340 2 L  940 658 1,222 141 TN
NH4dep 1,640 870 3,095 2 L 1,190 590 1,790 300 TN
Units are eq ha-1 yr-1. 1Distributions: L – lognormal, TN - normal truncated at two standard deviations. 2For
Thetford, the distributions described in Section 2.1.6 were used, and the range shown is from the 0.5th to
99.5th percentile; Liphook values were as in Table A3. Note that in Table A3, the BCdep and Sdep
parameters are total and not non-marine, and chloride was entered as an independent parameter, whereas
in Table A6, *BCdep and *Sdep are non-marine and there is no independent estimate of chloride.

Table A7: Terrestrial input parameters for critical loads for heathland
Parameter Mean Lower Upper Distribution
BCw 497 120 980 Rectangular
BCu -
Cacorr 0.023 0.074 Rectangular
Bcw 11
Bcu -
Bc/Alcrit 0.8 0.3 1.3 Rectangular
Kgibb 1,650 300 3,000 Rectangular
Q 16,000 14,400 17,600 Rectangular
Nu -
Ni 214 107 321 Rectangular
Nde 71 35.5 107 Rectangular
Units are as in Table A1. For the empirical critical load, only BCw was used.
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Table A8: Deposition input parameters for critical loads for heathland (Climoor Site)
Parameter Mean 1Lower 2Upper 3Distribution Correlations
*BCdep 135 72 255 L Sdep, 0.63; NO3dep, 0.17;

NH4dep, 0.45;
Bcdep 114 60 215 L Sdep, 0.76; NO3dep, 0.47;
*Sdep 1,300 690 2,453 L BCdep, 0.63; Bcdep, 0.76;

NO3dep, 0.44.
NO3dep 570 192 1,688 L BCdep, 0.17;Bcdep, 0.47;

Sdep, 0.44;NH4dep, 0.51.
NH4dep 680 360 1284 L BCdep, 0.45; NO3dep, 0.51.
Units are eq ha-1 yr-1. 1,2The distributions described in Section 2.1.6 were used, the lower limit is the 0.5th

percentile and the upper the 99.5th percentile. 3L – lognormal.

1.4 Critical loads for nutrient nitrogen
1.4.1 Detailed model description

In order to be at long-term steady state, nitrogen inputs should be equal to nitrogen outputs. This is the
basis of the steady state mass balance approach to setting critical loads for nutrient nitrogen. To avoid N
accumulation, the critical load must be equal to the sum of all the relevant N sinks in a catchment. In the
UK implementation of critical load methods, these are assumed to be the same as those used in
calculating CLminN, that is, N uptake (Nu), N immobilisation (Ni) and denitrification (Nde), plus a fourth term,
the acceptable N leaching (Nle(acc)).

Hence

CLnutN = Nu + Ni + Nde + Nle(acc) (A6)

Acceptable N leaching is defined as the leaching flux at which no damage occurs to the terrestrial
ecosystem or linked (aquatic) ecosystems. This is a rather tenuous concept and there is no straightforward
method of connecting leaching with damage. The UK approach is simply to use 4 kg N ha-1 yr-1 for
managed conifers and 3 kg N ha-1 yr-1 for managed deciduous forests. The latest Mapping Manual (UBA,
2004) recommends using a nitrate concentration of 14.3 µeq L-1 to calculate acceptable N leaching. This
will produce a lower value than the UK method except at very wet sites (run-off > 2,000 mm yr-1). For the
Monte Carlo analysis, we used a rectangular distribution for Nle(acc)  with a mean at the UK default value
(286 eq ha-1 yr-1), a minimum at the value recommended in the Mapping Manual, and a maximum of the
same amount above the mean as the minimum is below. The equation was applied to the Liphook and
Aber sites, the parameters being derived as above.

1.4.2 Input parameter sets used

Table A9: Terrestrial input parameters for nutrient N critical loads
Liphook Aber

Parameter Mean Lower Upper Distrib. Mean Lower Upper Distrib
Nu 500 400 600 Rect. 210 105 315 Rect.
Ni 214 107 321 Rect.  71  35.5 107 Rect.
Nde  71  35.5 107 Rect.  71  35.5 107 Rect.
Nle(acc) 286  67 505 Rect. 286  86 486 Rect.
Units are eq ha-1 yr-1. See Section 2.1.10.

Table A10: Deposition input parameters for nutrient N critical loads
Liphook Aber

Parameter Mean 0.5%ile 99.5%ile Distrib. Mean 0.5%ile 99.5%ile Distrib
NO3dep 392 132 1,160 L 940 318 2,784 L
NH4dep 513 272 969 L 1,190 632 2,245 L
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1.5 FAB model
1.5.1 Detailed model description

The first order acidity balance model (FAB model) is now the method of choice for calculating freshwater
critical loads. In various variants it is used in the UK and in continental Europe. The model is derived from a
combination of charge and mass balance approaches as described in Posch et al. (1997), Henriksen and
Posch (2001) and UBA (2004). Implementation of the model in the UK is described in Hall et al. (2003,
2004a). Various routines and assumptions are used to calculate the sinks of deposited S and N in terrestrial
catchments and lakes. The critical load criterion variable is the acid neutralising capacity (ANC), see below.

The FAB model can be written as:

*Sdep + Ndep  =  fNu + (1 - r)(Ni + Nde) + rNret + rSret + *BCle  - ANCle (A7)

where:

• * - indicates the non-marine fraction
• dep - deposition
• f - fraction of catchment area which is forested
• Nu - N uptake into plants
• r – ratio of lake area to total (lake + catchment area)
• Ni - N immobilisation in soil organic matter
• Nde - denitrification in the catchment soils
• Nret - in-lake retention of N
• Sret - in-lake retention of S
• BCle - leaching of base cations (Na+ + K+ + Ca2+ + Mg2+)
• ANCle - acid neutralising capacity leaching

The sinks for nitrogen in the terrestrial catchment are uptake, immobilization and denitrification. Nitrogen
uptake is calculated only for forest vegetation, as it is assumed that uptake by other species is only
temporary, whereas the nitrogen in trees may be removed by harvesting. Hence, the value used is meant to
represent the long-term average over the whole forest rotation. In the UK, two values for uptake are used, for
managed coniferous forest (0.21 keq ha-1yr-1) and managed broadleaved forest (0.42 keq ha-1yr-1).
Unmanaged woodland and other vegetation is assumed to have zero uptake. In practice, forest N uptake will
vary over a considerable range. Similarly, N immobilization is the long-term sustainable immobilization, not
the immobilization currently observed which is normally much higher. Immobilisation in the UK system is a
fixed value dependent on soil type, and the value applied to the catchment is an area-weighted mean of all
soil types present. Denitrification is treated in the same way as immobilisation in the UK, unlike in continental
Europe where it is made dependent on N availability, with consequent complications.

The parameters rNret and rSret in Equation A7 calculate nitrogen and sulphur retention respectively in any
lakes present and are discussed further below. The last two parameters in Equation A7 represent SO4

2- and
NO3

- fluxes through surface waters, and are derived from the definition of ANC:

[ANC] = [BC] - [SO4
2-] - [NO3

-] - [Cl -] (A8)

where brackets represent concentrations expressed in equivalence units. The chloride term can be
eliminated by using non-marine values for base cation and sulphate fluxes, as:

[ANC] ≈ [*BC] - [*SO4
2-] - [NO3

-] (A9)

Equation A7 can be translated into a critical load for acid deposition by calculating the terms on the right hand
side, and specifying a criterion concentration for ANC. The idea is that catchments should be able to supply
enough ANC to maintain the criterion ANC concentration indefinitely. The most common criterion value is 20
µeq L-1, and although the UK originally used zero, it now uses 20 µeq L-1 except where there is evidence that
the pre-industrial ANC was less than this (Hall et al., 2004a: Section 5). All the other terms in Equation A7 are
calculated at their steady state values - the only acceptable sinks for S and N, and sources for base cations,
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are those which are sustainable indefinitely. The critical load is then calculated by assuming a critical
concentration for ANC, and multiplying by water run-off to obtain an ANC flux. The sustainable base cation
leaching BCle is essentially that derived from mineral weathering and pre-industrial non-marine base cation
deposition, and is calculated in the form of a concentration [*BC]0 by a method derived from an earlier model,
the Steady State Water Chemistry Model, as follows. The current non-marine base cation concentration
[*BC]t is used as a basis for the estimate. It is recognised, however, that [*BC]t may incorporate base cations
leached from the soil ion exchange complex by acid deposition. These elements have therefore to be
subtracted from [*BC]t to obtain [*BC]0. The relationship between changes in SO4

2- + NO3
- and non-marine

base cations in surface waters is expressed by the F-factor:

F= ∆ [*BC] / ∆ ([*SO4
2-] + [NO3

-])  (A10)

F is estimated by an empirical relationship with current base cation concentrations observed in Norwegian
lakes (Brakke et al., 1990).

 )
S
BC

 = F
t][

sin( 2
π

(A11)

This formula is merely a fitted curve giving roughly the right shape: S is set to 400 µeq L-1, at which
concentration F = 1. If [*BC]t > 400 µeq L-1, F is set to 1.

If the pristine sulphate concentration [*SO4
2-]0 in a lake is known, the pristine base cation concentration [*BC]0

can be calculated. The pristine nitrate concentration is usually assumed to be zero. The pristine sulphate
concentration is estimated by yet another empirical relationship observed in Norwegian lakes, in areas
unaffected by acid deposition:

[*SO4
2-]0 = 15 + 0.16 x [*BC]t (A12)

It has long been thought that this equation gives values for [*SO4
2-]0  which are too high, and Henriksen and

Posch (2001) give a set of alternative equations.

[*BC]0  can now be calculated as:

 [*BC]0 = [*BC]t  - F x ([*SO4
2-]t + [NO3

-]t  - [*SO4
2-]0 - [NO3

-]0) (A13)

This procedure generates the last two terms in Equation A7 from a knowledge of [*BC]t and [*SO4
2-]t ; [NO3

-]0
is assumed to be zero. If a criterion ANC concentration is chosen to protect aquatic organisms, the last two
terms are abbreviated to Lcrit, where:

 Lcrit = Q([*BC]0 - [ANC]crit) (A14)

and Q is run-off expressed in meters.

Lakes are powerful generators of alkalinity, and they cannot be ignored when acidification effects are being
considered. The principal processes are S and N reduction in the lake sediments, and the rates of these
two processes are estimated as follows. In-lake retention of N is assumed to be proportional to the net
input of N, that is, N deposition less immobilisation, uptake and denitrification:

rNret = ρN(Ndep - fNu - (1-r)(Ni + Nde)) (A15)

where the factor ρN is modelled by an equation derived from work on North American lakes:

ρN = SN / (SN  + (Q / r)) (A16)

The factor SN is a mass transfer coefficient for N with units of velocity (m yr-1).

Sulphur retention is treated in an exactly analogous way:

rSret = ρSSdep (A17)

where the factor ρS is modelled by an equation based on the same North American lakes:
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ρS = SS / (SS  + (Q / r)) (A18)

where the factor SS is a mass transfer coefficient for S with units of velocity.

The FAB critical load equation can now be defined because all terms in Equation A7 can be calculated. From
this, the nodes on the critical load function can be calculated: CLmaxS (the critical load for S deposition when
N deposition is zero); CLmaxN (the critical load for N deposition when S deposition is zero) and CLminN (the
sum of the three N sink parameters).

Henriksen and Posch (2001), however, recognised that this formulation did not take into account N falling
directly into lakes, and produced a revised version of FAB. This now means that N deposition always makes
some contribution to critical load exceedance if there is a lake in the catchment. It causes considerable
complication, with three different equations for CLmaxN depending on the relative sizes of N deposition and
the catchment N sinks. The UK formulation (Hall et al., 2004a: Section 5.6) simplifies this situation by
assuming that forest uptake can be averaged over the whole terrestrial catchment. The physical meaning of
this is that forests can take up N from the non-forested parts of catchments, which are typically upslope. This
is a sensible simplification, but even so there are two equations for CLmaxN.

When Ndep ≤ CLminN  (no terrestrial nitrate leaching):

CLmaxN = Lcrit/r(1-ρN) (A19)

When Ndep > CLminN  (terrestrial nitrate leaching occurs):

CLmaxN = Lcrit/(1-ρN) + CLminN (A20)

The first of these recognises the theoretical possibility (C. Curtis, pers. comm.) that direct deposition of N to
the lake surface can result in exceedance before terrestrial N leaching occurs, due perhaps to a high value of
r and a very high terrestrial N sink (CLminN). This will lead to the apparently bizarre situation that CLmaxN may
be less than CLminN. The definition of CLminN is now the minimum N deposition load that results in terrestrial
N leaching. The formulae for CLmaxS and CLminN are always:

CLmaxS = Lcrit / (1-ρS) (A21)

CLminN  = (1-r)(Nu + Ni + Nde) (A22)

1.5.2 Implementation of FAB for Monte Carlo analysis

This new version of FAB proved quite difficult to implement in MS Excel. Results from all the AWMN sites
were compared with the official submissions produced by ENSIS (which are calculated using MS Access).
This time-consuming but valuable exercise ensured the uncertainty analysis below reflected the use of the
FAB model in the UK.

CLmaxN was the most awkward value to calculate because of the alternative formulations (Equations A19
and A20). An initial test was made to determine whether Ndep was greater than CLminN. If so, Equation A20
was used. If, however, Ndep was less than or equal to CLminN, (Equation A19), the results are only
meaningful under certain circumstances. If there is no lake in the catchment, and Ndep< CLminN, there is no
meaningful value for CLmaxN, as all deposition is absorbed by the catchment. Monte Carlo runs with this
combination of parameters were thus discarded from the simulations. If the catchment did contain a lake,
and Ndep< CLminN, then the value of CLmaxN calculated by Equation A19 would normally be much higher
than that calculated by Equation A20. If, however, by raising N deposition to this level it became greater
than CLminN, the lower (Equation A20) value would apply. CLmaxN would then be less. To resolve this
paradox, runs for which CLmaxN < CLminN were only accepted if there was a lake in the catchment and
Ndep< CLminN. These two conditions resulted in discarding up to 25 per cent of the Monte Carlo runs in
certain sites. Uncertainty statistics for CLmaxN have been calculated using this reduced number of runs. For
the other critical load parameters, statistics have been calculated using the full set of runs since the runs
discarded will tend to be those of lower N deposition, thus affecting exceedance. Exceedance calculations
are fortunately independent of CLmaxN.
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Exceedance was defined as:

Ex = (Sdep + Ndep) - Lcrit (A23)

This is not the amount by which S and N deposition has to be reduced to reach the critical load. The
different adsorption capacities of catchments and lakes for S and N mean there is no unique value for this
quantity.

1.5.3 Fish health functions

The distributions of healthy and reduced populations of all fish and brown trout as a function of ANC were
read from the graphs in Lien et al. (1996). These were approximated by functions suitable for
implementation in MS Excel. Functions and original data are shown in Figures A2 to A5. The distribution of
reduced fish populations fits well to a normal distribution with mean 1.9 µeq L-1 and standard deviation 16.2
µeq L-1 (Figure A2). The distribution of reduced brown trout populations also fits a normal distribution,
though not quite so well at the extremes (Figure A3). The parameters were mean, –1.0 µeq L-1 and
standard deviation, 16.0 µeq L-1. The distributions for extinct populations are asymmetric, but fit reasonably
well to four straight lines (Figures A4 and A5).

The probability of extinct brown trout populations was zero if ANC > 10 µeq L-1; and expressed as a
percentage, -0.84 ANC + 8.4 for ANC between 0 and 10 µeq L-1; -2.03555 ANC + 8.4 for ANC between 0
and -45 µeq L-1; and 100% for ANC < -45 µeq L-1.

For fish in general, the probability of extinct populations was zero if ANC > 1 µeq L-1; and expressed as a
percentage, -1.026 ANC + 1.3636 for ANC between 1 and -10 µeq L-1; -2.5 ANC - 13.3781 for ANC
between -10 and -45 µeq L-1; and 100% for ANC < -45 µeq L-1.

The current UK critical load of 20 µeq L-1 thus corresponds to a probability of reduced fish and brown trout
populations of about 10-13%, but a virtually zero probability of population extinction. The previous criterion
of 0 µeq L-1 had a probability of reduction of around 50%, and an extinction probability of 9-12%, always
assuming these functions are valid for UK waters.
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Figure A2: Relationship between ANC and percentage of lakes with reduced fish populations. The
blue points are literature data; the purple line is a fitted function.

Figure A3: Relationship between ANC and percentage of lakes with reduced brown trout populations.
The blue points are literature data; the purple line is a fitted function.
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Figure A4: Relationship between ANC and percentage of lakes with extinct fish populations. The blue
points are literature data; the purple line is a fitted function.

Figure A5: Relationship between ANC and percentage of lakes with extinct brown trout populations.
The blue points are literature data; the purple line is a fitted function.

0

10

20

30

40

50

60

70

80

90

100

-60 -50 -40 -30 -20 -10 0 10 20 30

ANC (µeq L-1)

La
ke

s 
w

ith
 E

xt
in

ct
 F

is
h 

Po
pu

la
tio

ns
 (%

)

from Lien et al
Function used

0

10

20

30

40

50

60

70

80

90

100

-60 -50 -40 -30 -20 -10 0 10 20 30

ANC (µeq L-1)

La
ke

s 
w

ith
 E

xt
in

ct
 T

ro
ut

 P
op

ul
at

io
ns

 (%
)

from Lien et al
Function used



Uncertainty in Critical Load Assessment Models 181

Appendix B – Methods Section 4
Appendix B contains details of input parameters for Section 4 of the main report: comparison of national
and site-specific uncertainty.

Table B1 shows default values and uncertainty ranges for input data parameters for Liphook, Thetford and
Aber comparison of national and site-specific data. “N” is national data and “SS” site-specific.

Table B2 shows default deposition parameters used in this study.



Uncertainty in Critical Load Assessment Models182

Table B1: Input parameters for the site-specific / national comparison
Parameter Site/Scale Input Lower Upper SD Distribution

Liphook N 100 0 200 Rectangular
Liphook SS 150 50 250 Rectangular
Thetford N 4,000 2,000 6,000 Rectangular

Thetford SS 4,600 2,300 6,900 Rectangular
Aber N 350 200 500 Rectangular

Base cation
weathering
(eq ha-1yr-1)

Aber SS 163 120 300 Rectangular
Liphook N 270 62 Rectangular

Liphook SS 270 135 540 Rectangular
Thetford N 270 62 Normal

Thetford SS 270 135 540 Rectangular
Aber N 270 62 Normal

Base cation uptake (eq
ha-1yr-1)

Aber SS 316 284 348 Rectangular
Liphook N 0.1 0 0.2 Rectangular

Liphook SS 0.57 0.47 0.67 Rectangular
Thetford N 1 0.8 1 Rectangular

Thetford SS 0.9 0.85 0.95 Rectangular
Aber N 0.1 0 0.2 Rectangular

Calcium correction
factor (dimensionless)

Aber SS 0.092 0.042 0.142 Rectangular
Liphook N 160 43.2 Normal

Liphook SS 125 80 320 Rectangular
Thetford N 160 43 Normal

Thetford SS 160 80 320 Rectangular
Aber N 160 43 Normal

Calcium uptake
(eq ha-1yr-1)

Aber SS 160 80 320 Rectangular
Liphook N 4,100 943 Normal

Liphook SS 4,690 4,221 5,159 Rectangular
Thetford N 1,620 373 Normal

Thetford SS 1,620 1,458 1,782 Rectangular
Aber N 13,800 3174 Normal

Run-off (m3 ha-1yr-1)

Aber SS 5,930 5,337 6,523 Rectangular
Ca/Alcrit (mol mol-1) All sites 1 0.5 1.5 Rectangular

Liphook N 950 760 1,140 Rectangular
Liphook SS 950 300 3,000 Rectangular
Thetford N 950 760 1,140 Rectangular

Thetford SS 950 300 3,000 Rectangular
Aber N 100 80 120 Rectangular

Gibbsite coefficient
(m6 eq-2)

Aber SS 100 10 380 Rectangular
Liphook N 214 107 321 Rectangular

Liphook SS 214 107 321 Rectangular
Thetford N 71 35.5 107 Rectangular

Thetford SS 71 35.5 107 Rectangular
Aber N 214 107 321

Nitrogen
immobilisation
 (eq ha-1yr-1)

Aber SS 150 120 180 Rectangular
Liphook N 210 57 Normal

Liphook SS 500 400 600 Rectangular
Thetford N 210 57 Normal

Thetford SS 210 105 420 Rectangular
Aber N 210 57

Nitrogen uptake (eq
ha-1yr-1)

Aber SS 246 221 271 Rectangular
Liphook N 71 36 107 Rectangular

Liphook SS 71 35.5 107 Rectangular
Thetford N 71 36 107 Rectangular

Thetford SS 71 35.5 107 Rectangular
Aber N 71 35.5 107 Rectangular

Denitrification
(eq ha-1yr-1)

Aber SS 35.5 28 43 Rectangular
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Table B2:  Default deposition parameters for Liphook, Thetford and Aber

Scenario NH4dep NO3dep  *Sdep
*BCdep Cadep

Liphook N 1,350 1,190 780 300 430

Liphook SS 513 392 653 582 175

Thetford N 1,640 1,240 490 190 220

Thetford SS 1,640 1,240 490 190 220

Aber N 1,190 940 830 180 310

Aber SS 1,190 940 1,481 397 485

Values are in eq ha-1 yr-1.
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Appendix C – Methods Section 5
Appendix C contains input data for TRACK Modelling

Table C1 summarises the input parameters used in the model runs. The baseline model run was based on
these parameter values. Table C2 summarises the range of input values used for Monte Carlo simulation.
Values of each parameter were taken at random from the range, assuming a uniform distribution. Three
hundred model runs were carried out.

Table C1: TRACK model set up parameters

Parameter Value
Receptor grid Ordnance Survey
Receptor square dimension 20 km
Stability class 4
Mean wind speed 7.5 m s -1

Trajectory duration 96 hours
Trajectory time step 120 seconds
Lookup time step 2880 seconds
Number of incoming trajectories incoming at
receptor

24

Number of trajectories per 24 hour period 4
Choice of solver Fixed time step
Number of vertical levels Single level
Deposition velocities Spatially disaggregated values based on surface

types (Table 3.6)
Choice of season All year
Seeder-feeder enhancement Orographic
Tracer Off
Source type Area sources
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Table C2: Input ranges of parameters used in Monte Carlo simulation and first order analysis for
TRACK

Parameter Units Baseline Range, % of baseline
Lower
limit

Upper limit

Dry deposition velocity, NO2 Land use dependent 40 160
Dry deposition velocity, HNO3 Land use dependent 50 200
Dry deposition velocity, aerosols Land use dependent 50 200
Dry deposition velocity, ammonia Land use dependent 50 200
Dry deposition velocity, sulphur
dioxide

Land use dependent 50 200

Ozone relaxation rate m s-1 50. 10-6 50 150
Aerosol relaxation rate m s-1 0.001 50 150
Wet scavenging coefficient, HNO3 s-1  9. 10-6 0 200
Wet scavenging coefficient,
aerosols

s-1  1.3. 10-5 30 1,000

Wet scavenging coefficient, sulphur
dioxide

s-1  1. 10-6 0 200

Wet scavenging coefficient, NH3 s-1  9. 10-6 20 100
Reaction rate, NO + O3 → NO2 + O2 See P4(083) 80 120
Reaction rate, OH + NO2 (+ M) →
HNO3 (+ M)

See P4(083) 70 130

Reaction rate, SO2 + OH → SO4 See P4(083) 20 100
Reaction rate, SO2 → SO4 See P4(083) 50 200
Reaction rate, SO4 + 2NH3 →
(NH4)2SO4

See P4(083) 30 1,000

Reaction rate, NH3 + HNO3 →
NH4NO3

See P4(083) 30 1,000

Reaction rate, NO2 + hν → NO + O See P4(083) 50 125
Reaction rate, NO2 + O3 → NO3 +
O2

See P4(083) 50 200

Reaction rates gaseous species
with aerosols

See P4(083) 50 200

[OH] STOCHEM field 50 200
[CH3COO2] STOCHEM field 50 200
[NO3] STOCHEM field 50 200
[O3] ppb 34 80 120
Fraction sulphur released as
sulphur trioxide or sulphate

0.05 60 140

Seeder feeder factor on wet
deposition rate

2 50 150

Seeder feeder factor on SO2
oxidation rate

70 130

Ammonia emissions Inventory 50 150
Hydrogen chloride emission Inventory 80 120
Oxides of nitrogen emissions Inventory 80 120
Boundary layer height m 800 80 120

Monitoring data

Monitoring data used in the assessment were taken from Management and Operation of the UK Acid
Deposition Monitoring Network: Data Summary for 2003. The data are summarised in Table C3. The data
were supplemented by additional data for ammonia and ammonium for 2002 from the UK National Ammonia
Monitoring Network for sites included in Table C3.
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Table C3: Network sites and measurements made in 2003.
Measurement: Precipitation NO2 SO2 Part.

SO4

Denuder
HNO3-
NO3

Frequency:
SITE:

daily
bulk

fortnightly
bulk

monthly fortnightly daily monthly

Yarner Wood  - 1  - 2
Lough Navar  - 1  - 2, 4  - 3
High Muffles  - 1  - 2  - 3
Eskdalemuir  - 1  - 2  - 3
Strathvaich Dam  - 1  - 2, 4  - 6  - 3

Barcombe Mills  - 1  - 2  - 3
Stoke Ferry  - 1  - 2  - 6  - 3
Glen Dye  - 1  - 2  - 6

Goonhilly  - 1
Compton  - 1
Flatford Mill  - 1
Woburn  - 1
Tycanol Wood  - 1
Llyn Brianne  - 1
Pumlumon  - 1
Preston Montford  - 1
Bottesford  - 1
Llyn Llydaw  - 1
Wardlow Hay Cop  - 1
Driby  - 1
Jenny Hurn - 7
Thornganby  - 1
Bannisdale  - 1
Hillsborough Forest  - 1
Cow Green Reservoir  - 1
Loch Dee  - 1
Redesdale  - 1
Whiteadder  - 1
Balquhidder  - 1
Polloch  - 1
Allt a’ Mharcaidh  - 1
Achanarras  - 1

(1) The sampling frequency of the bulk deposition monitoring was changed from weekly to fortnightly with
effect from November 2001.
(2) The daily bubbler measurement programme was replaced with a fortnightly filter-pack measurement
programme during 2001.
(3) A site in the CEH HNO3 Denuder Monitoring Network (see Section 4).
(4) This site, together with those at Bush, Cwmystwyth and Sutton Bonington, was used as an overlap site
for the introduction of the filter-pack sampler.
(5) The daily wet-only measurement was stopped with effect from November 2001.
(6) The daily particulate sulphate measurements were stopped with effect from November 2001.
(7) This site was closed with effect from November 2001.
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